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Abstract

We derive backtests of Value-at-Risk and Expected Shortfall forecasts for levels that vanish as a

function of the sample size. In the standard case, the level of the forecasts is assumed to be fixed,

leading to χ2-limiting distributions of the backtests. We show that for levels vanishing sufficiently

fast, Poisson-type limits arise instead. These mimic key features of the test statistics, such as

discreteness. Simulations demonstrate that for forecast levels and sample sizes of practical interest,

using the Poisson-type limits leads to much improved size vis-à-vis the standard χ2-limits.
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1 Motivation

Ample evidence for clustered volatility in financial time series has led to a burgeoning literature

on dynamic forecasts of risk; e.g, Engle and Manganelli (2004), El Ghourabi, Francq, and Telmoudi

(2016). Two of the most popular risk measures are the Value-at-Risk (VaR) and the Expected Shortfall

(ES). The VaR at level p (VaRt,p) is defined as the p-quantile of the conditional return distribution

Ft(x) = P
{
Yt ≤ x | Ωt−1

}
, where Ωt−1 denotes the information available at time t − 1. Typically,

the information set contains past returns, i.e., Ωt−1 = σ(Yt−1, Yt−2, . . .). ES at level p (ESt,p) is the

conditional expected loss given a return below VaRt,p, i.e., ESt,p = (1/p)
∫ p
0 VaRt,u du. To evaluate

VaR and ES forecasts, the literature has proposed various so-called backtests; see, e.g., Escanciano

and Olmo (2010) and Du and Escanciano (2017). All these tests assume a fixed level p ∈ (0, 1) of the

VaR and ES forecasts to be backtested. It is of interest for at least two reasons to extend backtests

to the case where p = pn is allowed to converge to 0 as the sample size n → ∞. First, some recent

suggestions for producing VaR and ES forecasts based on extreme value theory explicitly let pn → 0

(Chan et al., 2007; Hoga, 2018+). Thus, it is desirable to develop corresponding backtests specifically
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tailored to vanishing p. Second, for test statistics of backtests, approximations of the finite-sample

distributions suggested by standard asymptotic theory are often poor when the level p is small (Engle

and Manganelli, 2004; Escanciano and Olmo, 2010). Escanciano and Olmo (2010, p. 44) argue that

‘a different asymptotic theory based on p→ 0 as n→∞ may help to this end’.

It is the aim of this note to provide such a theory for the VaR backtest of Escanciano and Olmo

(2010) and the ES backtest of Du and Escanciano (2017). For simplicity, we do so ignoring the issue

of estimation risk that is dealt with in some detail by the aforementioned authors. The investigation

of the above two backtests is only exemplary. So we consider this notes main contribution to be

what may be termed the ‘vanishing p’-approach (i.e., the approach of suitably letting p = pn → 0

in deriving limit theory for backtests) and highlighting its practical usefulness in simulations (in the

sense of improved size).

2 ‘Vanishing p’-Backtests

Denote by Y1, . . . , Yn the returns on a risky asset and let p = pn ∈ (0, 1/2), so that we focus on

left-tail VaR and ES. To assess the quality of VaR forecasts V̂aRt,pn = F̂←t (pn) (issued, e.g., from

GARCH-type models) for these returns, we test

HVaR
0 : It,n := I{

Yt≤V̂aRt,pn

} i.i.d.∼ Ber(pn),

where Ber(p) denotes the Bernoulli distribution with success probability p. So under the null, the

sequence of VaR violations {It,n}n∈N, t=1,...,n is a row-wise independent, identically distributed (i.i.d.)

triangular array. Following Escanciano and Olmo (2010) and others, we consider the sample autoco-

variances

γIj,n =
1

n− j

n∑
t=j+1

(It,n − pn)(It−j,n − pn), j ≥ 1. (1)

More precisely, γIj,n are the sample autocovariances calculated using the null hypothetical mean of

the indicators, E[It,n | HVaR
0 ] = pn, instead of the sample mean. This gives the test power against

deviations from correct unconditional coverage, i.e., E[It,n] = pn. A test of HVaR
0 can then be based

on the Ljung–Box-type test statistic

LBVaR(d) = n(n+ 2)

d∑
j=1

1

n− j

(
γIj,n

pn(1− pn)

)2

, d ≥ 1.

Here, pn(1−pn) in the denominator serves to standardize the indicators in (1) under the null, because

Var(It,n − pn | HVaR
0 ) = pn(1− pn).

We now turn to ES backtesting. To the best of our knowledge, the backtest of Du and Escanciano

(2017) is the only ES backtest that is based on statistical theory (e.g, McNeil and Frey, 2000, base

their ES backtest on a heuristic bootstrap procedure). To describe it, let the conditional distribution
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Ft(·) = P{Yt ≤ · | Ωt−1} be continuous and, for the moment, known. The ES backtest is then based

on the i.i.d. U [0, 1]-transformed residuals Ut = Ft(Yt), where U [0, 1] denotes the uniform distribution

on [0, 1]. In practice, one uses the estimated version Ût = F̂t(Yt).

Example 1. Consider a normal GARCH(1,1) model Yt = σtεt with i.i.d. standard normal innovations

εt and σ2t = ω + αY 2
t−1 + βσ2t−1. Since (under some mild conditions) σ2t is measurable with respect to

Ωt−1 = σ(Yt−1, Yt−2, . . .), we have Ft(·) = Φ(·/σt) and thus Ut = Φ(Yt/σt) = Φ(εt), where Φ(·) denotes

the standard normal distribution function. The estimated counterparts are F̂t(·) = Φ(·/σ̂t), where

σ̂2t = ω̂+ α̂Y 2
t−1 + β̂σ̂2t−1 for quasi-maximum likelihood (QML) estimates (ω̂, α̂, β̂), and Ût = Φ(Yt/σ̂t).

The key idea of Du and Escanciano (2017) is to write

ESt,pn = E[Yt | Yt ≤ VaRt,pn , Ωt−1] =
1

pn

∫ pn

0
VaRt,u du,

so that an ES backtest can be based on the cumulative violations process Ht,n defined as

Ht,n =
1

pn

∫ pn

0
I{
Yt≤V̂aRt,u

}du =
1

pn

∫ pn

0
I{Ût≤u}du =

pn − Ût
pn

I{Ût≤pn},

where we used that I{Yt≤V̂aRt,u} = I{Ût≤u}. The cumulative violations process Ht,n not only registers

whether a VaR violation has occurred (via I{Ût≤pn} = I{Yt≤V̂aRt,pn}
), but also the magnitude of the

violation (via pn − Ût = Ft(VaRt,pn) − F̂t(Yt)). Since, ideally, the estimated Ût mimic the i.i.d. Ut ∼
U [0, 1], {Ht,n}n∈N, t=1,...,n should ideally be row-wise i.i.d. with Ht,n

D
= pn−U

pn
I{U≤pn} for U ∼ U [0, 1].

This forms the basis for a test of

HES
0 : Ht,n is i.i.d. with Ht,n

D
=
pn − U
pn

I{U≤pn}, U ∼ U [0, 1].

Similarly as above, we consider the sample autocovariances with the null hypothetical mean, E[Ht,n |
HES

0 ] = pn/2, imposed:

γHj,n =
1

n− j

n∑
t=j+1

(Ht,n − pn/2)(Ht−j,n − pn/2), j ≥ 1.

A test of HES
0 can then be based on the Ljung–Box-type test statistic

LBES(d) = n(n+ 2)
d∑
j=1

1

n− j

(
γHj,n

pn(1/3− pn/4)

)2

, d ≥ 1.

As before, the term pn(1/3−pn/4) in the denominator serves as a standardization, because Var(Ht,n−
pn/2 | HES

0 ) = pn(1/3− pn/4).

We can now state our main result.

Theorem 1. Let χ2
d denote a chi-squared distribution with d degrees of freedom and Poi(λ) a Poisson

distribution with parameter λ.
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(i) If np2n →∞, then

LBVaR(d)
D−→

(n→∞)
χ2
d under HVaR

0 ;

LBES(d)
D−→

(n→∞)
χ2
d under HES

0 .

(ii) If np2n → λ ∈ (0,∞), then

LBVaR(d)
D−→

(n→∞)
ZVaR(d) under HVaR

0 ,

where ZVaR(d) = λ−1
∑d

j=1(Z
(j)
λ − λ)2 for Z

(j)
λ

i.i.d.∼ Poi(λ);

LBES(d)
D−→

(n→∞)
ZES(d) under HES

0 ,

where ZES(d) = (9/λ)
∑d

j=1(Z
(j)
CP,λ − λ/4)2 for i.i.d. Z

(j)
CP,λ with compound Poisson distribution∑N

i=1 Ũi, where N ∼ Poi(λ) and i.i.d. Ũi, distributed as the product U1U2 of two independent

U [0, 1]-random variables.

We provide a proof in the Appendix. The convergences in Theorem 1 are based on the idealized

null hypotheses HVaR
0 and HES

0 . In the presence of estimation effects, these will not hold exactly

and, thus, the convergences in Theorem 1 do not hold exactly. In this sense, we have not dealt with

estimation effects. As pointed out above, Escanciano and Olmo (2010) and Du and Escanciano (2017)

treat these in-depth.

Comparing Theorem 1 (i) with the fixed-p results of Escanciano and Olmo (2010) and Du and

Escanciano (2017), we see that even when pn → 0 a χ2-limit may still be obtained. However, for this

to be the case, pn must converge to 0 at a slower rate than 1/
√
n. In this sense, the requirement

np2n → ∞ describes the barrier at which VaR and ES backtests can be applied as usual, i.e., with

critical values calculated from the χ2-distribution. We refer to the other case where np2n → λ as the

‘vanishing p’ case.

Comparing the cases np2n → ∞ and np2n → λ, we identify three marked differences. First, in

the former case, standard Gaussian central limit theory applies, leading to a χ2-limit, i.e., a sum

of i.i.d. standardized normal random variables. In contrast, in the latter case, a Poisson-type limit

arises. More specifically, the limiting distribution is that of a sum of i.i.d. standardized Poisson

random variables (for LBVaR(d)) and a sum of i.i.d. standardized compound Poisson random variables

(for LBES(d)). Second, no matter how fast or slow pn may converge to zero, as long as np2n → ∞, a

χ2-limit obtains. Once np2n → λ holds, however, the speed of convergence of pn to zero changes the

limiting distribution via the parameter λ appearing in the Poisson-type limit. Third, while LBVaR(d)

and LBES(d) have the same same limit when np2n → ∞, this no longer holds under np2n → λ, where

different limits arise.

Enlarging on these different limits, it is interesting to note that key features of the respective test
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Figure 1: Quantile-quantile plot of χ2
5 vs. LBVaR(5) for λ = 0.5 and λ = 2.5 in (a) and (b), and χ2

5

vs. LBES(5) for λ = 0.5 and λ = 2.5 in (c) and (d).

statistics are preserved in the asymptotic limit when np2n → λ. First, the test statistic LBVaR(d) and

its limit ZVaR(d) are discrete. A similar result also holds for LBES(d) and ZES(d). As Ht,n only has

one atom in zero, γHj,n only has one atom in p2n/4. So LBES(d) and ZES(d) both have continuous

distributions outside the point [(3/4)pn/(1− 3/4pn)]2n(n+ 2)
∑d

j=1 1/(n− j) and its limit (3/4)2dλ,

respectively. This is illustrated in the quantile-quantile plot in Figure 1, where the χ2
5-distribution is

compared to ZVaR(5) and ZES(5) for different values of λ. Figure 1 shows that the larger λ, the closer

LBVaR(d) and LBES(d) are to the χ2
5-distribution. Yet, particularly for large quantiles that may be

used as critical values in backtesting, notable differences still emerge.
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Second, the form of the test statistics is reflected in the limit, in that

n∑
t=j+1

ItIt−j
D−→

(n→∞)
Z

(j)
λ
D
=

N∑
i=1

1 and

n∑
t=j+1

HtHt−j
D−→

(n→∞)
Z

(j)
CP,λ

D
=

N∑
i=1

Ũi,

as we show in the proof of Theorem 1. The summands 1 and Ũi appearing in the limiting sums have

a close connection to the key terms ItIt−j and HtHt−j appearing in LBVaR(d) and LBES(d), viz.

1
D
= ItIt−j |It=1,It−j=1 and Ũi

D
= HtHt−j |It=1,It−j=1.

(The first equality is trivial and the second equality can be checked readily by calculating the respective

distribution functions.) The appearance of the Poi(λ)-distributed N as the upper limit in the sums

can also be explained. Since ItIt−j ∼ Ber(p2n), it is plausible that the number of successful Bernoulli

trials
∑n

t=j+1 ItIt−j is roughly binomial with parameters n and p2n, written Bin(n, p2n). As is well-

known, Bin(n, p2n) ≈ Poi(λ) for np2n → λ. So the limiting sum
∑N

i=1 1 essentially sums up the terms

ItIt−j |It=1,It−j=1 as often as suggested by an approximation to the number of successful Bernoulli

trials. A similar argument holds for
∑N

i=1 Ũi. Thus, the form of the test statistic is reflected in the

limit. This close resemblance may explain the marked improvements gained over standard Gaussian

asymptotics, that we demonstrate in simulations next.

3 Simulations

We explore the finite-sample properties of the tests derived from Theorem 1 for d = 5 and vanishing

p = pn → 0 as n → ∞. Specifically, we let np2n = 0.1, 0.3, . . . , 2.9. The value of λ is only specified

asymptotically via np2n → λ. We simply set λ = np2n in the simulations. As sample sizes, we use

n = 250, 500, 1000 corresponding to about one year, two years and four years of daily stock returns.

The simulation results are based on 1,000,000 replications.

To assess the impact of estimation effects on the backtests, we consider the normal GARCH(1,1)

of Example 1 with parameters (ω, α, β) = (0.00001, 0.1, 0.85) and QML estimates (ω̂, α̂, β̂), computed

on a pre-sample Y−T+1, . . . , Y0 of length T ∈ {1000,∞}. The choice T = 1000 is motivated by Chan

et al. (2007) and Hoga (2018+), and T = ∞ corresponds to the case of no estimation effect, i.e.,

knowledge of the true model parameters of the GARCH(1,1). The test of HVaR
0 is then based on{

I{Yt≤V̂aRt,pn}

}
t=1,...,n

, where V̂aRt,pn = σ̂tΦ
−1(pn) with σ̂2t = ω̂ + α̂Y 2

t−1 + β̂σ2t−1. The test of HES
0

is based on {Ût = Φ(Yt/σ̂t)}t=1,...,n. So in both tests estimation effects appear, since σt needs to be

estimated.

Since the limiting distribution ZVaR(d) for the VaR backtest is discrete, one cannot construct exact

asymptotic level-α tests for any level α ∈ (0, 1). Hence, randomization is required. To circumvent this

cumbersome procedure, we introduce a random variable ε0 ∼ 0.001 ·N(0, 1) independent of {Yt} and
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exploit that under the HVaR
0 ,

LBVaR(d) + ε0
D−→

(n→∞)
ZVaR(d) + ε0, ε0 independent of ZVaR(d).

The limiting distribution is now continuous, as desired. Note that for LBES(d) no randomization is

required, since the only point of discontinuity corresponds to a small quantile that is of no use as a

critical value.

We consider three types of backtests. The first set uses the χ2-critical values for VaR and ES

backtesting (from Theorem 1 (i)), the second uses critical values from ZVaR(d) + ε0 and ZES(d)

(from Theorem 1 (ii)), and the third derives critical values from the null hypothetical finite-sample

distributions of LBVaR(d) + ε0 and LBES(d), which can easily be simulated. This allows us to study—

with (T = 1000) and without (T =∞) estimation effects—how much closer our Poisson-type limits are

to the finite-sample distribution compared to the standard χ2-limits. All critical values are calculated

via simulations using 1,000,000 replications.

Figure 2 displays empirical size of the six backtests as a function of pn. First, consider panels (a2),

(b2) and (c2), where no estimation effects are present, i.e., T = ∞. The results for the third set of

backtests are not displayed as they precisely hold size by construction in the absence of estimation risk.

It is evident from the dotted lines that empirical size of the VaR and ES backtests with asymptotic

χ2-critical values is rather poor for almost all small levels pn considered here. This is in line with

simulations by Escanciano and Olmo (2010). As they speculate, using limit theory in Theorem 1 (ii)

tailored specifically to pn → 0 improves size. Even for the smallest sample size of n = 250, the VaR

and ES backtests with Poisson-type limits hold size very well. For the ES backtest (hollow triangles),

the improvements tend to be more marked. While the improvements in size are the most marked for

small pn, there is—maybe interestingly—no price to pay in terms of size for applying the ‘vanishing

p’-backtests for large pn.

Turning to the case T = 1000 we find all tests to reject more frequently, presumably because the

need to estimate parameters leads to more volatile VaR and ES forecasts, which are then rejected

more often as inadequate. As demonstrated theoretically by Escanciano and Olmo (2010), the extent

to which size distortions arise is determined by the ratio n/T . This is borne out in panels (a1), (b1)

and (c1), where size distortions increase the larger n/T . A comparison of the χ2-type backtests with

the other two reveals that the ‘small pn’-distortions dominate the estimation effects for more extreme

levels. Nonetheless, even for small pn, using the finite-sample distributions no longer leads to backtests

that hold size and the ‘vanishing p’-approach again leads to similar size, particularly for large n/T .

Compared with the χ2-limit theory, the ‘vanishing p’-approach leads to backtests that have size

close to the ones based on the finite-sample distributions, which are exact when no estimation effects are

present. This suggests that the largest part of the size distortions when pn is small can be eliminated

by the ‘vanishing p’-approach. The advantage of this approach over that exploiting finite-sample
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Figure 2: Empirical size for VaR and ES backtests with χ2-critical values (χ2, dotted), critical values
calculated from the Poisson-type limits ZVaR(d) + ε0 and ZES(d) (Poi, solid), and critical values from
LBVaR(d) + ε0 and LBES(d) (Sim, dashed). Top, middle and bottom plots for n = 250, 500 and 1000,
respectively. Results shown for pn with np2n = 0.1, 0.3, . . . , 2.9.

distributions of the test statistics is that incorporating estimation effects à la Escanciano and Olmo

(2010) and Du and Escanciano (2017) is only possible in the (asymptotic) ‘vanishing p’-approach.

Figure 2 demonstrates that estimation effects can have serious consequences for size. Thus, it is well

worth addressing jointly both distorting factors of backtests, viz. estimation effects and small pn. Yet,

this is beyond the scope of the present note.

We do not compare power for brevity and also because our key concern in this note was to improve

size. It suffices to say that the oversized backtests based on χ2-critical values will trivially have higher

power than the other tests. As documented by Du and Escanciano (2017), the ES backtests tend to
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have higher power than the VaR backtests, because they also take into account the magnitude of the

violations.

4 Discussion

We show that two popular VaRt,p and ESt,p backtests can be applied as usual, when the level p = pn

tends to zero not too fast as the sample size n→∞. The rate at which pn is allowed to decay to zero

is quite slow, which may explain the often observed poor size control of backtests when pn is small. To

address this, we derive limit theory for np2n → λ ∈ (0,∞). In this ‘vanishing p’-approach, the limiting

distributions depend on the decay rate of pn via λ. The limit also reflects key properties of the test

statistics. These advantages lead to marked improvements in size. Our theoretical results, derived for

one VaR and one ES backtest, can of course only be exemplary. Yet, the finite-sample improvements

afforded by the ‘vanishing p’-approach suggest that if VaR/ES backtests are to be applied for small

levels—for which they are of course intended—then these backtests should be developed for suitably

vanishing pn. Our simulations have shown that this holds particularly true for ES backtests, which are

likely to gain in importance with the intended move of the Basel Committee on Banking Supervision

(2013) from VaR to ES as the standard measure of risk. In future applications of the ‘vanishing

p’-approach it seems worthwhile to address also the size distortions induced by estimation effects.
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Appendix

Proof of Theorem 1: We start by proving the results under (i), where np2n → ∞. First, consider

LBVaR(d) and define the (d× 1)-random vectors

yt,n =
1

pn(1− pn)

([
It,n − pn

] [
It−j,n − pn

])>
j=1,...,d

, n ∈ N, t = 1, . . . , n,

where we put I0,n = . . . = I1−d,n = pn. To derive that

n−1/2
n∑
t=1

yt,n =
√
n

(
n− j
n

γj,n
pn(1− pn)

)>
j=1,...,d

D−→
(n→∞)

N(0, Id), (A.1)

where Id denotes the (d× d)-identity matrix and 0 a (d× 1)-vector of zeros, we apply a Cramér–Wold

device and consider {a>yt,n} for a (d× 1)-vector a with a>a = 1. Set

σ2n := Var

 n∑
t=1

a>yt,n

 =

n∑
t=1

Var
(
a>yt,n

)
=

n∑
t=1

a>Var
(
yt,n

)
a.

Note for the above that the yt,n are serially uncorrelated. From It,n ∼ Ber(pn) it is straightforward

to derive that σ2n/n→ 1 as n→∞.

Since a>yt,n is (d+ 1)-dependent, we only need to verify the Lindeberg condition

1

σ2n

n∑
t=1

E
[
(a>yt,n)2I{|a>yt,n|≥εσn}

]
−→

(n→∞)
0 ∀ ε > 0

to derive that σ−1n
∑n

t=1 a
>yt,n is asymptotically standard normal (Utev, 1991, Corollary 2). Since

σ2n/n→ 1, this implies

n−1/2
n∑
t=1

a>yt,n
D−→

(n→∞)
N(0, 1). (A.2)

The indicator in the Lindeberg condition is eventually 0, since σnpn = (σn/
√
n)(
√
npn) → ∞ by

assumption on pn. Thus, the Lindeberg condition is satisfied, so that (A.2) and hence (A.1) follow.

Now, the convergence of LBVaR(d) follows from (A.1) using the continuous mapping theorem and

Slutzky’s lemma.

The convergence of LBES(d) can be derived similarly by considering the re-defined

yt,n =
1

pn(1/3− pn/4)

([
Ht,n − pn/2

] [
Ht−j,n − pn/2

])>
j=1,...,d

, n ∈ N, t = 1, . . . , n,

where H0,n = . . . = H1−d,n = pn/2.

Now, we turn to verifying part (ii) of Theorem 1, where np2n → λ. We do so only for d = 2, because

the proof for d > 2 is only notationally more complicated. Again, we first derive the convergence of

LBVaR(d = 2). To do so, consider
∑n

t=1 ỹt,n, where

ỹt,n = ([It − pn][It−1 − pn], [It − pn][It−2 − pn])>

1



with It := It,n for notational conciseness. Here, we require ỹt,n to be strictly stationary in rows for our

limit theory. So for the moment we consider i.i.d. {It}t=−1,0,...,n Ber(pn)-random variables. Decompose

n∑
t=1

ỹt,n =
n∑
t=1

ItIt−1
ItIt−2

− pn n∑
t=1

[It − pn] + [It−1 − pn]

[It − pn] + [It−2 − pn]

− n∑
t=1

p2n
p2n

 =: A−B − C.

We consider A, B and C separately. Since np2n → λ, we obtain C −→
(n→∞)

(λ, λ)>. That B = oP (1)

follows because for j = 0, 1, 2

P


∣∣∣∣∣∣pn

n∑
t=1

(It−j − pn)

∣∣∣∣∣∣ ≥ ε
 ≤ ε−2 Var

pn
n∑
t=1

(It−j − pn)


= (pn/ε)

2
n∑
t=1

Var(It−j)

= (pn/ε)
2npn(1− pn) = O(np3n) = o(1).

It remains to consider A. For brevity, define zt,n = (ItIt−1, ItIt−2)
>. We show that

A =
n∑
t=1

zt,n
D−→

(n→∞)
(Z

(1)
λ , Z

(2)
λ )> (A.3)

for independent Z
(i)
λ ∼ Poi(λ) (i = 1, 2). To do so, we apply part (i3) of Corollary 4.14 (ii) in Kobus

(1995). Let‖·‖ denote the maximum norm in R2. We check the following conditions, which correspond

to (4.23) and (4.9) in Kobus (1995),

sup
n∈N

nP
{∥∥z1,n∥∥ > ε

}
< Mε <∞; (A.4)

lim
δ↓0

lim sup
n→∞

nE

[∥∥z1,n∥∥ I{‖z1,n‖≤δ}
]

= 0, (A.5)

and, for x ∈ E6 = [0,∞) \ {0} ⊂ R6,

nP
{

(z1,n, z2,n, z3,n)> ∈ [0,x]c
}
−→

(n→∞)
λ

6∑
j=1

I{xj∈[0,1]} =: νϕ([0,x]c), (A.6)

which corresponds to (4.25) in Kobus (1995) by Resnick (2007, Lemma 6.1). The complement [0,x]c

in (A.6) is taken in the space E6.

Conditions (A.4) and (A.5) are easily verified, as

nP
{∥∥z1,n∥∥ > ε

}
≤ n

2∑
j=1

P
{
I1I1−j = 1

}
= 2np2n −→

(n→∞)
2λ

and, since
∥∥z1,n∥∥ can only take on the values 0 and 1, we have E

[∥∥z1,n∥∥ I{‖z1,n‖≤δ}] = 0 for δ < 1.

To derive (A.6), write (z1,n, z2,n, z3,n)> = (Z1, . . . , Z6)
> and x = (x1, . . . , x6)

>. Then, use inclu-

2



sion/exclusion to obtain

nP
{

(z1,n, z2,n, z3,n)> ∈ [0,x]c
}

= nP
{
∪6j=1{Zj > xj}

}
=

6∑
j=1

nP
{
Zj > xj

}
−

∑
1≤i<j≤6

nP
{
Zi > xi, Zj > xj

}
+ . . . (−1)6+1nP

{
∩6i=1{Zi > xi}

}
.

All terms but the first converge to zero. For the first, noting that all Zj have the same distribution,

we get

nP
{
Zj > xj

}
= nP{I1I0 > xj}

= np2nI{xj∈[0,1]} −→
(n→∞)

λI{xj∈[0,1]}.

Since for Zi > xi and Zj > xj (i 6= j) to hold at least three distinct indicators It must equal one,

which only occurs with probability p3n = P{Ir = 1, Is = 1, It = 1 (r, s, t distinct)}, the other terms are

bounded by a finite number of terms of the form

nP{Zi > xi, Zj > xj} ≤ Knp3n = o(1).

Combining the results gives (A.6), i.e.,

nP
{

(z1,n, z2,n, z3,n)> ∈ [0,x]c
}
−→

(n→∞)
λ

6∑
j=1

I{xj∈[0,1]} = νϕ
(
[0,x]c

)
.

Thus, νϕ spreads mass onto each axis according to the one-dimensional measure ν([0, x]c) := λI{x∈[0,1]}

(i.e., it concentrates mass λ in the points (1, 0, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 0, 1)) but assigns no mass off

the axes.

It remains to calculate ρ(·) := νϕx0+x1+x2(·)−νϕx1+x2(·) defined in Equation (4.28) in Kobus (1995).

With y = (y1, y2)
> ∈ E2 = [0,∞) \ {0} ⊂ R2

νϕx0+x1+x2
(
[0,y]c

)
:= νϕ

(
{x ∈ E6 : (x1, x2)

> + (x3, x4)
> + (x5, x6)

> ∈ [0,y]c}
)

= νϕ({x ∈ E6 : (x1, 0)> ∈ [0,y]c}) + νϕ({x ∈ E6 : (0, x2)
> ∈ [0,y]c})

+ . . .+ νϕ({x ∈ E6 : (x5, 0)> ∈ [0,y]c}) + νϕ({x ∈ E6 : (0, x6)
> ∈ [0,y]c})

= ν({x ∈ (0,∞) : x ∈ [0, y1]
c}) + ν({x ∈ (0,∞) : x ∈ [0, y2]

c})

+ . . .+ ν({x ∈ (0,∞) : x ∈ [0, y1]
c}) + ν({x ∈ (0,∞) : x ∈ [0, y2]

c})

= 3λI{y1∈[0,1]} + 3λI{y2∈[0,1]},

where we have used in the second step that νϕ assigns no mass off the axes, such that if any component

of x ∈ E6 is not zero (e.g., x1 6= 0) then all other components can be set to zero (x2 = . . . = x6 = 0).

Similarly,

νϕx1+x2
(
[0,y]c

)
:= νϕ

(
{x ∈ E6 : (x3, x4)

> + (x5, x6)
> ∈ [0,y]c}

)

3



= 2λI{y1∈[0,1]} + 2λI{y2∈[0,1]}.

Consequently,

ρ([0,y]c) = λI{y1∈[0,1]} + λI{y2∈[0,1]}.

Obviously, ρ(·) concentrates mass λ on the points (1, 0)> and (0, 1)>. The conclusion in (A.3) follows

from Corollary 4.14 of Kobus (1995).

Combining the convergences of A, B and C yields

n∑
t=1

ỹt,n
D−→

(n→∞)
(Z

(1)
λ − λ, Z

(2)
λ − λ).

Setting I0 = I−1 = pn does not change the convergence. To see this for the first component of ỹt,n

(the second component can be dealt with similarly) write it as

n∑
t=1

[It − pn][It−1 − pn] = [I1 − pn][I0 − pn] +
n∑
t=2

[It − pn][It−1 − pn]

If we show that [I1 − pn][I0 − pn] = oP (1), the claim follows. Now, for n sufficiently large, s.t. pn < ε,

P
{
|[I1 − pn][I0 − pn]| ≥ ε

}
= P {I1 = 1, I0 = 1} = O(p2n) = o(1).

With the so defined I0 and I1,

n∑
t=1

ỹt,n = ((n− 1)γI1,n, (n− 2)γI2,n)>
D−→

(n→∞)
(Z

(1)
λ − λ, Z

(2)
λ − λ)>.

From this, the continuous mapping theorem, Slutzky’s lemma and np2n → λ,

LBVaR(2)
D−→

(n→∞)
λ−1

{
(Z

(1)
λ − λ)2 + (Z

(2)
λ − λ)2

}
.

This concludes the proof.

Finally, we turn to LBES(d = 2). The proof follows along similar lines as that for LBVaR(d = 2),

so we only sketch it using identical notation to highlight the similarities. Consider
∑n

t=1 ỹt,n, with the

re-defined

ỹt,n =

([
Ht −

pn
2

][
Ht−1 −

pn
2

]
,
[
Ht −

pn
2

][
Ht−2 −

pn
2

])>
,

where Ht := Ht,n. Consider i.i.d. {Ht}t=−1,0,...,n. Decompose

n∑
t=1

ỹt,n =
n∑
t=1

HtHt−1

HtHt−2

− pn
2

n∑
t=1

[Ht − pn
2 ] + [Ht−1 − pn

2 ]

[Ht − pn
2 ] + [Ht−2 − pn

2 ]

− 1

4

n∑
t=1

p2n
p2n

 =: A−B − C.

We consider A, B and C separately. Similarly as before, we get C −→
(n→∞)

1/4(λ, λ)> and B = oP (1).
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It remains to consider A. Re-define zt,n = (HtHt−1, HtHt−2)
>. We show that

A =

n∑
t=1

zt,n
D−→

(n→∞)
(Z

(1)
CP,λ, Z

(2)
CP,λ)> (A.7)

for independent Z
(i)
CP,λ (i = 1, 2) with compound Poisson distribution

∑N
i=1 Ũi, where N ∼ Poi(λ) and

i.i.d. Ũi, distributed as the product U1U2 of two independent U [0, 1] random variables.

To do so, we again apply part (i3) of Corollary 4.14 (ii) in Kobus (1995). Conditions (A.4) and

(A.5) are easy to establish. The equivalent of (A.6) is now

nP
{

(z1,n, z2,n, z3,n)> ∈ [0,x]c
}
−→

(n→∞)
λ

6∑
j=1

[
1− (xj ∧ 1){1− log(xj ∧ 1)}

]
=: νϕ([0,x]c) (A.8)

for x ∈ E6. Note that P{Ũ1 > x} = 1−(x∧1){1− log(x∧1)}, as a simple calculation shows. To derive

(A.8), write (z1,n, z2,n, z3,n)> = (Z1, . . . , Z6)
> and x = (x1, . . . , x6)

>. Then, use inclusion/exclusion

to obtain

nP
{

(z1,n, z2,n, z3,n)> ∈ [0,x]c
}

= nP
{
∪6j=1{Zj > xj}

}
=

6∑
j=1

nP
{
Zj > xj

}
−

∑
1≤i<j≤6

nP
{
Zi > xi, Zj > xj

}
+ . . . (−1)6+1nP

{
∩6i=1{Zi > xi}

}
.

By a similar argument as before, all terms but the first converge to zero. So we only consider a

summand in the first term, where the Zj again all have the same distribution. We have

nP
{
Zj > xj

}
= nP{H1H0 > xj}

= nP

{
pn − U1

pn
I{U1≤pn}

pn − U0

pn
I{U0≤pn} > xj

}
= nE

[
I{ pn−U1

pn
I{U1≤pn}

pn−U0
pn

I{U0≤pn}>xj
}
]

= n

∫ pn

0

∫ pn

0
I{ pn−u1

pn

pn−u0
pn

>xj}
du1du0

= np2n[1− (xj ∧ 1){1− log(xj ∧ 1)}] −→
(n→∞)

λ[1− (xj ∧ 1){1− log(xj ∧ 1)}].

Note H1H0 ∈ [0, 1]. Hence, we obtain (A.8). The measure νϕ in (A.8) spreads mass onto each axis

according to the one-dimensional measure ν([0, x]c) := λ[1 − (x ∧ 1){1 − log(x ∧ 1)}], but assigns no

mass off the axes.

It remains to calculate ρ(·) := νϕx0+x1+x2(·)− νϕx1+x2(·), where with y = (y1, y2)
> ∈ E2

νϕx0+x1+x2
(
[0,y]c

)
:= νϕ

(
{x ∈ E6 : (x1, x2)

> + (x3, x4)
> + (x5, x6)

> ∈ [0,y]c}
)

= νϕ({x ∈ E6 : (x1, 0)> ∈ [0,y]c}) + νϕ({x ∈ E6 : (0, x2)
> ∈ [0,y]c})

+ . . .+ νϕ({x ∈ E6 : (x5, 0)> ∈ [0,y]c}) + νϕ({x ∈ E6 : (0, x6)
> ∈ [0,y]c})
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= ν({x ∈ (0,∞) : x ∈ [0, y1]
c}) + ν({x ∈ (0,∞) : x ∈ [0, y2]

c})

+ . . .+ ν({x ∈ (0,∞) : x ∈ [0, y1]
c}) + ν({x ∈ (0,∞) : x ∈ [0, y2]

c})

= 3λ
[
1− (y1 ∧ 1){1− log(y1 ∧ 1)}

]
+ 3λ

[
1− (y2 ∧ 1){1− log(y2 ∧ 1)}

]
,

where we have used in the second step that νϕ assigns no mass off the axes, such that if any component

of x ∈ E6 is not zero (e.g., x1 6= 0) then all other components can be set to zero (x2 = . . . = x6 = 0).

Similarly,

νϕx1+x2
(
[0,y]c

)
:= νϕ

(
{x ∈ E6 : (x3, x4)

> + (x5, x6)
> ∈ [0,y]c}

)
= 2λ

[
1− (y1 ∧ 1){1− log(y1 ∧ 1)}

]
+ 2λ

[
1− (y2 ∧ 1){1− log(y2 ∧ 1)}

]
.

Consequently,

ρ([0,y]c) = λ
[
1− (y1 ∧ 1){1− log(y1 ∧ 1)}

]
+ λ

[
1− (y2 ∧ 1){1− log(y2 ∧ 1)}

]
.

The convergence in (A.7) follows. Combining the convergences of A, B and C gives

n∑
t=1

ỹt,n
D−→

(n→∞)
(Z

(1)
CP,λ − λ/4, Z

(2)
CP,λ − λ/4, )

>.

The remainder of the proof follows as before.
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