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Abstract

A wide range of risk measures can be written as functions of conditional tail moments and Value-

at-Risk, for instance the Expected Shortfall. In this paper we derive joint central limit theory for

semi-parametric estimates of conditional tail moments, including in particular Expected Shortfall,

at arbitrarily small risk levels. We also derive confidence corridors for Value-at-Risk at differ-

ent levels far out in the tails, which allows for simultaneous inference. We work under a semi-

parametric Pareto-type assumption on the distributional tail of the observations and only require

an extremal-near epoch dependence (E-NED) assumption. In simulations, our semi-parametric

expected shortfall estimate is shown to be more accurate in terms of root mean square error than

extant non-parametric estimates. An empirical application illustrates the proposed methods.

Keywords: Value-at-Risk, Expected Shortfall, E-NED, Pareto-type Tails, Confidence Corridor

JEL classification: C12 (Hypothesis Testing), C13 (Estimation), C14 (Semiparametric and Non-

parametric Methods)

1 Motivation

The need to quantify risk, defined broadly, has lead to a burgeoning literature on risk measures. Two

of the most popular risk measures in the financial industry are the Value-at-Risk at level p ∈ (0, 1)

(VaRp), defined as the upper p-quantile of the distribution of losses X, and the Expected Shortfall

(ES) at level p, defined as the expected loss given an exceedance of VaRp, ESp = E
[
X
∣∣ X > VaRp

]
.

ES is defined if E |X| < ∞ and is sometimes also called conditional tail expectation or tail-VaR.

In contrast to ES, VaR is not a coherent risk measure in the sense of Artzner et al. (1999) and is

uninformative as to the expected loss beyond the VaR. Yet, VaR is easy to estimate and to backtest

(e.g., Dańıelsson, 2011).

A unifying perspective on VaR, ES and a wide range of other popular risk measures was presented

by El Methni et al. (2014). They introduced the conditional tail moment (CTM), i.e., the a-th

moment (a > 0) of the loss given a VaRp-exceedance, CTMa(p) = E
[
Xa

∣∣ X > VaRp

]
. For a = 1,

the conditional tail moment reduces to the ES. For an appropriate choice of a < 1 the conditional

tail moment may still be used for extremely heavy-tailed time series with E |X| = ∞, when ES can

no longer be used. For instance, there is evidence that economic losses in the aftermath of natural

disasters have infinite means (Ibragimov et al., 2009; Ibragimov and Walden, 2011). Then, El Methni

et al. (2014) showed that many risk measures are functions of VaR and CTMs. Hence, by virtue of the

continuous mapping theorem, weak limit theory for estimators of these risk measures can be grounded

on joint asymptotics of VaR and CTM estimates.

Denote the ordered observations of a time series X1, . . . , Xn by X(1) ≥ . . . ≥ X(n). While –
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in the spirit of El Methni et al. (2014) – we develop limit theory for many risk measures, we shall

frequently focus on our estimator of ES (or, equivalently, CTM1(p)). ES estimation for time series

is a topic of recent interest, yet the literature almost exclusively focuses on the case where E |Xi|2 <

∞; see, e.g., Scaillet (2004); Chen (2008). However, evidence for infinite variance models is wide-

spread. For instance, IGARCH models have a tail index equal to 2 and hairline infinite variance

(Ling, 2007, Thm. 2.1 (iii)). We refer to Engle and Bollerslev (1986) and the references therein for

evidence of the plausibility of IGARCH models for exchange rates and interest rates. Infinite variance

phenomena can be found more generally in, e.g., insurance and internet traffic applications (Resnick,

2007, Examples 4.1 & 4.2), and emerging market stock returns and exchange rates (Hill, 2013, 2015a).

To the best of our knowledge, only Linton and Xiao (2013) and Hill (2015a) avoid a finite variance

assumption for ES estimation of time series. Linton and Xiao (2013) essentially study a simple non-

parametric estimate of ES,

ÊSp =
1

pn

n∑
i=1

XiI{Xi≥X(bpnc)}, (1)

where IA denotes the indicator function for a set A, and b·c rounds to the nearest smallest integer.

Linton and Xiao (2013) assume regularly varying tails

P
{
|Xi| > x

}
= x−1/γL(x), where L(·) is slowly varying. (2)

In the case of the Pareto distribution L(·) is identically a constant, which is why distributions with

(2) may be said to be of Pareto-type. Concretely, Linton and Xiao (2013) impose γ ∈ (1/2, 1). Since

moments of order greater than or equal to 1/γ do not exist but smaller ones do (de Haan and Ferreira,

2006, Ex. 1.16), this rules out infinite-mean models by γ < 1 (in which case ES does not exist anyway)

and finite variance models by γ > 1/2. For geometrically strong-mixing {Xi}, they derive the stable

limit of n1−γ(ÊSp − ESp), which however depends on the unknown γ. For feasible inference, they

consider a subsampling procedure. Hill (2015a), who also works with geometrically strong-mixing

random variables (r.v.s), uses a tail-trimmed estimate

ÊS
(∗)
p =

1

pn

n∑
i=1

XiI{X(kn)≥Xi≥X(bpnc)}, (3)

where the integer trimming sequence kn < n tends to infinity with kn = o(n). This improves the

convergence rate to
√
n/g(n) for some slowly varying function g(n) → ∞ if γ ∈ [1/2, 1). His results

also extend to γ < 1/2, where he obtains the standard
√
n-rate. In both cases, Hill (2015a) delivers

standard Gaussian limit theory, although – in contrast to Linton and Xiao (2013) – he requires a

second-order refinement of (2). To deal with possibly non-vanishing bias terms that may arise due to
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trimming, Hill (2015a) exploits regular variation and proposes an ES estimator ÊS
(2)

p = ÊS
(∗)
p + R̂(2)

n

with optimal bias correction R̂(2)
n .

Despite working under a semi -parametric Pareto-tail assumption as in (2), Linton and Xiao (2013)

and Hill (2015a) (essentially) only consider non-parametric estimators of ES, viz., ÊSp and ÊS
(2)

p . Only

Hill (2015b) exploits assumption (2) for purposes of bias correction via R̂(2)
n in the ES estimate ÊS

(2)

p .

In this paper we take a different tack and use (2) as a motivation for a truly semi -parametric of ES,

and indeed more generally of CTMs. In a regression environment with covariates and independent,

identically distributed (i.i.d.) observations, similar estimates have been studied by El Methni et al.

(2014).

Our first main contribution is to derive the joint weak Gaussian limit of our VaR and CTM

estimators under a general notion of dependence, covering and significantly extending the geometrically

strong-mixing framework of Linton and Xiao (2013) and Hill (2015a). Thus, not only do we cover

estimators of ES (as Linton and Xiao, 2013, and Hill, 2015a, do), but also – among others – those of

VaR, conditional tail variance (Valdez, 2005) and conditional tail skewness (Hong and Elshahat, 2010);

see El Methni et al. (2014). In our extreme value setting, we necessarily require that p = pn → 0 as

n→∞, thus disadvantaging our estimator in a direct comparison of the rates obtained by Linton and

Xiao (2013) and Hill (2015a) for ÊSp and ÊS
(2)

p ; see also Remark 6 below. Nonetheless, we obtain a

convergence rate that can improve the n1−γ-rate for ÊSp. While the
√
n/g(n)-rate of ÊS

(2)

p cannot be

beaten, we show in simulations that our estimator still has a lower root mean square error (RMSE).

This is true for a wide range of values p ∈ {0.005, 0.01, 0.05, 0.1}, where – quite expectedly, as we focus

on p = pn → 0 – the relative advantage becomes larger, the smaller p.

Our second main contribution is to derive confidence corridors for VaR at different levels. This is

important because ‘[i]n financial risk management, the portfolio manager may be interested in different

percentiles [...] of the potential loss and draw some simultaneous inference. This type of information

provides the basis for dynamically managing the portfolio to control the overall risk at different levels’

(Wang and Zhao, 2016, p. 90). Working with VaR (albeit conditioned on past returns) Wang and Zhao

(2016) derive a functional central limit theorem for VaR estimates indexed by the level p ∈ [δ, 1 − δ]

for some δ > 0. While Wang and Zhao (2016, Rem. 2) conjecture that an extension to the interval

p ∈ (0, 1) may be possible, their current results exclude the tails of the distributions, which are of

particular interest in risk management. We fill this gap in the present extreme value setting, where

the tail is the natural focus.

The rest of the paper proceeds as follows. Section 2 states the main theoretical results. Subsec-

tion 2.1 derives joint central limit theory for CTMs and VaR. Subsection 2.2 derives confidence corri-
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dors for VaR at different levels, allowing for simultaneous inference. In the simulations in Section 3,

the finite-sample performance is illustrated and compared with ÊS
(2)

p . An application in Section 4

applies the results to the time series of VW log-returns during the attempted takeover by Porsche,

that ultimately failed. The final Section 5 concludes. Proofs are relegated to the Appendix.

2 Main results

2.1 Limit theory for extreme conditional tail moments

Let {Xi} be a strictly stationary sequence of non-negative r.v.s, whose right tail will be studied

as is customary in extreme value theory. In practice, non-negativity may be achieved via a simple

transformation, e.g., XiI{Xi≥0} or −XiI{−Xi≥0} if interest centers on the right- or left-tail, respectively.

Define the survivor function F (·) = 1 − F (·), where F denotes the distribution function of X1. We

assume regularly varying tails F (·) ∈ RV−1/γ , i.e.,

lim
x→∞

F (λx)

F (x)
= λ−1/γ ∀ λ > 0, (4)

where γ > 0 is called the extreme value index and α = 1/γ the tail index. Note that (4) is equivalent

to

F (x) = x−1/γL(x), where L(·) is slowly varying, i.e., lim
x→∞

L(λx)

L(x)
= 1. (5)

This in turn is equivalent to (de Haan and Ferreira, 2006, p. 25)

U(x) = xγLU (x), where U(x) = F←(1− 1/x) and LU (·) is slowly varying. (6)

Since (4) is an asymptotic relation, we require an intermediate sequence kn →∞ with kn = o(n) and

kn < n for statistical purposes. This sequence kn is restricted by the following assumption.

Assumption 1. There exists a function A(·) with limx→∞A(x) = 0 such that for some ρ < 0

lim
x→∞

F (λx)

F (x)
− λ−1/γ

A(x)
= λ−1/γ

λρ/γ − 1

γρ
∀ λ > 0. (7)

Additionally,
√
knA

(
U(n/kn)

)
−→ 0, as n→∞.

Remark 1. This assumption controls the speed of convergence in (4) and is consequently referred to

as a second-order condition in extreme value theory (EVT). Equivalently, it may also be written in

terms of the quantile function U(·) from (6) (see de Haan and Ferreira, 2006, Thm. 2.3.9). In this

form, it is widely-used in tail index (e.g., Einmahl et al., 2016; Hoga, 2017+a) and extreme quantile

estimation (e.g., Chan et al., 2007; Hoga, 2017+b). Examples of d.f.s satisfying Assumption 1 are

5



abundant. For instance, d.f.s expanding as

F (x) = c1x
−1/γ + c2x

−1/γ+ρ/γ (1 + o(1)
)
, x→∞, (c1 > 0, c2 6= 0, γ > 0, ρ < 0) (8)

fulfill Assumption 1 with the indicated γ and ρ, and kn = o(n−2ρ/(1−2ρ)) (de Haan and Ferreira, 2006,

pp. 76-77). The more negative ρ, the closer the tail is to actual Pareto decay (ρ = −∞). In the Pareto

case, kn = o(n) can be chosen quite large, which is desirable for reasons detailed in Remark 6. The

expansion in (8) is satisfied by, e.g., the Student tν-distribution with γ = 1/ν and ρ = −2, where

ν > 0 denotes the degrees of freedom.

Define xp = F←(1 − p) as the (1 − p)-quantile for short. Most of the literature, including Linton

and Xiao (2013) and Hill (2015a), focuses on the case where p ∈ (0, 1) is fixed. EVT however allows for

p = pn → 0 as n→∞. Approximations derived from EVT often provide better approximations when

p is small – the case of particular interest in risk management –, as they take the semi-parametric tail

(4) into account. The following two motivations show how the regular variation of the tail is taken

into account.

First, we use the regular-variation assumption (4) to estimate xpn in CTMa(pn) = E
[
Xa

∣∣ X > xpn
]

as follows. Note that pn can be very small, such that xpn may lie outside the range of observations

X1, . . . , Xn. Then, the idea is to base estimation of xpn on a less extreme (in-sample) quantile xkn/n

and use (4) to extrapolate from that estimate. Concretely, set x = xkn/n, λ = xpn/xkn/n and use (4)

as an approximation to obtain (
xpn
xkn/n

)−1/γ
≈ 1− F (xpn)

1− F (xkn/n)
≈ npn

kn
. (9)

Replacing population with empirical quantities, this approximation motivates the so-called Weissman

(1978) estimator x̂pn = dγ̂nX(kn+1), where dn = kn/(npn). It has been used in, e.g., Drees (2003), Chan

et al. (2007), or Hoga and Wied (2017). Of course, there is a wide range of estimators γ̂. We will use

the Hill (1975) estimator

γ̂ =
1

kn

kn∑
i=1

log
(
X(i)/X(kn+1)

)
in the following, which is arguably the most popular one (see, e.g., Hsing, 1991; Hill, 2010, and the

references therein).

For the second approximation we exploit (4) once again. Together with Pan et al. (2013, Thm. 4.1),

which was obtained from Karamata’s theorem, this assumption implies CTMa(pn) ∼ xapn
1−aγ as n→∞.

Asymptotic equivalence, an ∼ bn, is defined as limn→∞ an/bn = 1. Thus, the following estimate
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suggests itself:

ĈTMa(pn) :=
x̂apn

1− aγ̂
. (10)

This estimator accounts for the regular variation both in estimating xpn (through (9)) as well as in

calculating the expected loss above xpn (through CTMa(pn) ∼ xapn
1−aγ ).

Next, we introduce a sufficiently general dependence concept. The asymptotic behavior of ĈTMa(pn)

crucially relies on that of γ̂ (see the proof of Theorem 1). To the best of our knowledge, the most

general conditions under which extreme value index estimators have been studied, are those in Hill

(2010). He develops central limit theory for the Hill (1975) estimator under L2-extremal-near epoch

dependence (L2-E-NED). Similar to the mixing conditions of Hsing (1991), dependence is restricted

only in the extremes. However, the NED property is often more easily verified (e.g., for ARMA-

GARCH models) and offers more generality, whereas mixing conditions are typically harder to verify

and some simple time series models fail to be mixing (e.g., Andrews, 1984).

For the following introduction to E-NED, it will be illustrative to keep an ARMA(p, q)-GARCH(p, q)

model {Xi} in mind. It is generated by the ARMA(p, q) structure

Xi = µ+

p∑
t=1

φtXi−t +

q∑
t=1

θtεi−t + εi,

which is driven by a GARCH(p, q) process {εi}, i.e.,

εi = σiUi, where σ2i = ω +

p∑
t=1

αtε
2
i−t +

q∑
t=1

βtσ
2
i−t.

In the following, dependence is restricted separately in the errors {εi} and the actual (observed) process

{Xi}.

Consider a process {εi} (the GARCH process in the above example) and a possibly vector-

valued functional of it,
{
En,i

}
n∈N;i=1,...,n

. The array nature of En,i allows for tail functionals, such

as En,i = I{εi>an,i} for some triangular array an,i → ∞ as n → ∞. The En,i induce σ-fields

F tn,s = σ
(
En,i : s ≤ i ≤ t

)
(where En,i = 0 for i /∈ {1, . . . , n}), which can be used to restrict de-

pendence in {εi} using the mixing coefficients

εn,qn := sup
A∈Fi

n,−∞, B∈F∞n,i+qn
: i∈Z

∣∣P (A ∩B)− P (A)P (B)
∣∣ ,

ωn,qn := sup
A∈Fi

n,−∞, B∈F∞n,i+qn
: i∈Z

∣∣P (B|A)− P (B)
∣∣ .

Here, {qn} ⊂ N is a sequence of integer displacements with 1 ≤ qn < n and qn → ∞. We then say
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that {εi} is F-strong (uniform) mixing with size λ > 0 if

(n/kn)qλnεn,qn −→
(n→∞)

0

(
(n/kn)qλnωn,qn −→

(n→∞)
0

)
.

Given {εi} thus restricted, it remains to restrict dependence in the observed series {Xi} (the

ARMA-GARCH process in the above example). Hill (2010) shows that the asymptotics of the Hill

(1975) estimator can be grounded on tail arrays
{
I{Xi>bneu}

}
, where bn = U(1 − kn/n). Hence,

dependence in {Xi} need only be restricted via
{
I{Xi>bneu}

}
. This is achieved by assuming that, for

some p > 0, {Xi} is Lp-E-NED on
{
F in,1

}
with size λ > 0, i.e.,∥∥∥∥I{Xi>bneu} − P

{
Xi > bne

u
∣∣∣ F i+qnn,i−qn

}∥∥∥∥
p

≤ fn,i(u) · ψqn ,

where fn,i : [0,∞) → [0,∞) is Lebesgue measurable, supi=1,...,n supu≥0 fn,i(u) = O
(

(kn/n)1/p
)

, and

ψqn = o(q−λn ). For more on this dependence concept, we refer to Hill (2009, 2010, 2011).

Assumption 2. {Xi} is L2-E-NED on
{
F in,1

}
with size λ = 1/2. The constants fn,i(u) are integrable

on [0,∞) with supi=1,...,n

∫∞
0 fn,i(u)du = O(

√
kn/n). The base {εi} is either F-uniform mixing with

size r/[2(r − 1)], r ≥ 2, or F-strong mixing with size r/(r − 2), r > 2.

The final assumption we require is

Assumption 3. The covariance matrix of
1√
kn

∑n
i=1

[
log(Xi/bn)+ − E log(Xi/bn)+

]
1√
kn

∑n
i=1

[
I{
Xi>bneu/

√
kn

} − P {Xi > bne
u/
√
kn
}]


is positive definite uniformly in n ∈ N for all u ∈ R.

Assumptions 2 and 3 are identical to Assumptions A.2 and D in Hill (2010), whereas Assumption 1

is stronger than the corresponding Assumption B in Hill (2010). Assumption 3 is used to show

consistency of estimates of the asymptotic variance of the Hill (1975) estimator in Hill (2010, Thm. 3).

This estimator, σ̂2kn , appears in Theorem 1, because the asymptotics of x̂pn are grounded on those of

γ̂; see the proof of Theorem 1 and in particular the proof of Theorem 4.3.9 in de Haan and Ferreira

(2006). The strengthening of Assumption B of Hill (2010) in Assumption 1 is required to derive limit

theory for x̂pn (see the proof of de Haan and Ferreira, 2006, Theorem 4.3.9).

Theorem 1. Let a1, . . . , aJ be positive and aJ+1 = 1. Assume that

npn = o(kn) and log(npn) = o(
√
kn). (11)
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Suppose that Assumption 1 is met for 0 < γ < max{a1, . . . , aJ+1}. Suppose further that Assumptions 2

and 3 are met. Then

1

σ̂kn

√
kn

log dn


 ĈTMaj (pn)

CTMaj (pn)
− 1


j=1,...,J

,

(
x̂pn
xpn
− 1

)
′

(12)

converges in distribution to a zero-mean Gaussian limit with covariance matrix Σ = (aiaj)i,j∈{1,...,J+1}

and

σ̂2kn :=
1

kn

n∑
i,j=1

w

(
s− t
γn

)log

max

{
Xi

X(kn+1)
, 1

}− kn
n
γ̂


log

max

{
Xj

X(kn+1)
, 1

}− kn
n
γ̂


is a kernel-variance estimator with Bartlett kernel w(·), bandwidth γn → ∞ with γn = o(n), and

kn/
√
n→∞.

Remark 2. Condition (11) restricts the decay of pn → 0. Here, pn = o(kn/n) describes the upper

bound, required for the EVT approach to make sense, whereas log((n/kn)pn) = o(log(npn)) = o(
√
kn)

prohibits pn from decaying to zero too fast and thus describes the boundary, where extrapolation

becomes infeasible.

Remark 3. The estimator σ̂2kn is due to Hill (2010, Sec. 4). Other possible choices for the kernel w(·)

include the Parzen, quadratic spectral and Tukey-Hanning kernel.

Remark 4. It is interesting to contrast Theorem 1 with the fixed-p result in Linton and Xiao (2013).

There, replacing the estimate X(b(1−p)nc) with the true quantile xp in (1) does not change the limit

of n1−γ(ÊSp − ESp) and the joint distribution of the VaR and the ES estimate is asymptotically

independent (Linton and Xiao, 2013, pp. 778-779). In our case where p = pn → 0, the ES estimate is

essentially the VaR estimate by (10) and the limit distributions of both estimates are perfectly linearly

dependent by (A.3) in the Appendix.

Remark 5. The result of Theorem 1 is sufficient to deliver weak limit theory not only for VaR and

ES, but also for a wide range of risk measures, e.g., the conditional tail variance, conditional tail

skewness, conditional VaR. For terminology and more detail, we refer to El Methni et al. (2014).

Remark 6. It may be instructive to compare the rate of convergence from Theorem 1 for our ES

estimator ĈTM1(pn) with the rates of ÊSp and ÊS
(2)

p . As pointed out in Remark 4, for γ ∈ (1/2, 1)

Linton and Xiao (2013) obtained a rate of n1−γ for ÊSp. Up to slowly varying terms, Hill (2015a)

improves this rate to
√
n for ÊS

(2)

p and general γ < 1. Recalling from Section 2.1 that CTM1(pn) ∼
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U(1/pn)/(1− γ), Theorem 1 implies, for γ < 1,

1− γ
σ̂kn

√
kn

(log dn)U(1/pn)

(
ĈTM1(pn)− CTM1(pn)

)
D−→

(n→∞)
N(0, 1).

To maximize the rate, we choose kn as large as allowed by Assumption 1, i.e., kn = n1−δ/g(n) =

o(n−2ρ/(1−2ρ)) for δ = 1/(1− 2ρ). Here, g(·) is a slowly varying function with g(n) −→
(n→∞)

∞ as slowly

as desired; e.g., g(n) = log n or g(n) = log(log n). Since pn → 0 (such that U(1/pn) → ∞) in our

framework, CTM1(pn) is at a disadvantage compared with ÊSp and ÊS
(2)

p , where p ∈ (0, 1) is fixed.

So to make the comparison fairer, we choose the largest possible rate for pn allowed by npn = o(kn)

from (11). Concretely, we set pn = kn/(n · g(n)) = 1/(nδg(n)). So the rate in our case is given by

√
kn

(log dn)U(1/pn)

(6)
=
√
n

n−δ/2pγn√
g(n)(log kn/(npn))LU (1/pn)

=
√
n

n−δ(1/2+γ)√
g(n)(log g(n))LU (1/pn)g(n)γ

.

Hence, up to terms of slow variation, the rate is given by
√
nn−δ(1/2+γ). Two intuitive observations

can be made. First, the larger γ (i.e., the heavier the tail), the slower the rate of convergence. This

is to be expected, because the Hill estimate γ̂ (upon which our asymptotic results rest) has larger

variance for larger γ – everything else being equal. For instance, for the tν-distribution with γ = 1/ν

and ρ = −2, one may choose kn = o(n−2ρ/(1−2ρ)) = o(n4/5) irrespective of the degrees of freedom

ν (recall Remark 1). Then, for i.i.d. observations with d.f.s satisfying Assumption 1, de Haan and

Ferreira (2006, Thm. 3.2.5) implies
√
kn(γ̂k − γ)

D−→ N(0, γ2), as n→∞.

Second, the more negative ρ, the smaller δ = 1/(1 − 2ρ) > 0 and hence the better the rate.

This result is also expected, since a more negative ρ implies a better fit to true Pareto behavior; see

Remark 1. So the heavier the tail (the larger γ), the better our method can be expected to work

relative to the non-parametric estimate ÊSp.

So under the caveat that ĈTM1(pn) is at a disadvantage, a direct comparison of the convergence

rates reveals the following. While the
√
n-rate (up to terms of slow variation) of ÊS

(2)

p cannot be

obtained, the n1−γ-rate of ÊSp can be improved upon. For instance, for the tν-distribution (where

γ = 1/ν and ρ = −2) we obtain a rate of
√
nn−δ(1/2+γ) = n1/5(2−γ), which is faster (slower) than n1−δ

for γ > 3/4 (γ < 3/4).

2.2 Simultaneous inference on VaR

Working with VaR conditioned on past returns, Wang and Zhao (2016) and Francq and Zaköıan (2016)

argue that it is desirable in risk management to be able to draw simultaneous inference on VaR at

multiple risk levels. Theorem 2 below shows that in our (unconditional) extreme value context this is

particularly easy. Heuristically, if the assumptions of Theorem 1 are met for some sequence pn → 0,
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then this also holds for the sequence pn(t) := pnt for t ∈
[
t, t
]

(0 < t < t < ∞), which suggests that

x̂pn(t) := X(kn+1)(k/(npn(t)))γ̂ and x̂pn should behave very similarly. Note that x̂pn = x̂pn(1).

Theorem 2. Under the conditions of Theorem 1 we have that for 0 < t < t <∞

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)
log

(
x̂pn(t)

xpn(t)

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|,

where Z ∼ N (0, 1), dn(t) = kn/(npn(t)) and xpn(t) = F←(1− pn(t)).

Then uniform convergence in t ∈ [t, t] of Theorem 2 suggests the following (1 − β)-confidence

corridor for VaR with levels between pn(t) and pn(t):

x̂pn(t) exp

{
−Φ

(
1− β

2

)
log(dn(t))√

kn

}
≤ xpn(t) ≤ x̂pn(t) exp

{
Φ

(
1− β

2

)
log(dn(t))√

kn

}
. (13)

It is surprising that the width of the confidence corridor for xpn(t) does not depend on the values of t

and t. Indeed, the confidence corridor is simply obtained by calculating pointwise confidence intervals

for x̂pn(t). This can be explained by the Pareto-approximation that pins down the tail very precisely

by extrapolation. Clearly, in finite sample one may not choose t too large, because then the quality

of the Pareto-approximation will suffer, rendering confidence corridors (13) imprecise. Also, in actual

applications one may not choose t too small, as this would push the boundaries of extrapolation too

far. So in practice a judicious choice of t and t (and pn) is required. In an application in Section 4,

some guidance on this issue is given. A similar, yet non-uniform, version of Theorem 2 is given under

a more restrictive β-mixing condition in Drees (2003, Thm. 2.2).

Remark 7. Gomes and Pestana (2007, Sec. 3.4) found in simulations that the finite-sample distri-

bution of log
(
x̂pn/xpn

)
is in better agreement with the asymptotic distribution than (x̂pn/xpn − 1).

This may be due to log(x̂pn) = γ̂ log(dn) + log(X(kn+1)) being a linear function of γ̂, upon which the

asymptotic results rest (see the proof of de Haan and Ferreira, 2006, Thm. 4.3.9).

Remark 8. A close inspection of the proofs of Theorems 1 and 2 reveals that the methodology of

this section may also be applied to conditional tail moments. For instance, for our ES estimator we

obtain

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)
log

(
ĈTM1(pn(t))

CTM1(pn(t))

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|,

where Z ∼ N (0, 1).
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3 Simulations

This section compares the root mean squared error (RMSE) of our ES estimator ĈTM1(pn) with

the optimally bias-corrected estimator ÊS
(2)

pn of Hill (2015a). In his comparison of the finite-sample

performance of ÊS
(2)

pn and the untrimmed ÊSpn , Hill (2015a, p. 21) finds that ‘trimming does not impose

a detectable penalty in terms of small sample mean-squared-error.’ So for brevity we only report the

results for ÊS
(2)

pn . We carry out the comparison for realistic models of financial and insurance data.

As models for financial time series we use an AR(1)-GARCH(1, 1) with skewed-t innovations and a

GARCH(1, 1) model with t-noise, both from Bücher et al. (2015, Sec. 5.2). Bücher et al. (2015) found

that these two stationary and heavy-tailed models provide a good fit to the NASDAQ and DJIA

log-returns from January 4, 1984 to December 31, 1990. We use the resulting parameter estimates

from Bücher et al. (2015, Table 7). To the best of our knowledge, no results on the regular variation

of AR(1)-GARCH(1, 1) processes exist. Yet, as both AR(1)-ARCH(1) and GARCH(1, 1) processes

have regularly varying tails (see Fasen et al., 2010, and the references therein), the same property is

likely to hold for AR(1)-GARCH(1, 1) models as well. Verifying the second-order Assumption 1 is

notoriously difficult for time series models, so it is frequently treated as a given (Shao and Zhang,

2010; Hill, 2015b).

As models for insurance data we use i.i.d. draws from a Burr distribution with survivor function

F (x) =

(
β

β + xτ

)λ
, x > 0, τ > 0, β > 0, λ > 0.

This is a popular class of distributions in insurance, because it offers more flexibility than the Pareto

distribution (e.g., Burnecki et al., 2011). Its tail index is given by α = τλ and the slowly varying

function A(·) in Assumption 1 can be chosen as a constant multiple of x−τ . Hence, the larger τ > 0,

the faster the convergence to true Pareto behavior in (7). In insurance applications one often finds

for the tail index that α ∈ (1, 2) (see, e.g., Resnick, 2007), which motivates our choices of τ = 2 and

λ = 0.75, and τ = 3 and λ = 0.5, both resulting in α = 1.5. For the latter choice where τ is larger (and

hence the Pareto approximation more accurate), we expect improved performance of our estimator

relative to ÊS
(2)

p , which only partially takes into account the Pareto-type tail for bias correction.

Both estimators ĈTM1(pn) and ÊS
(2)

pn depend on a sequence kn that is only specified asymptotically.

Hence, some guidance for the choice of kn in finite-samples is required. For ÊS
(2)

pn , Hill (2015a, Sec. 3)

proposes to choose the intermediate sequence kn = min
{

1, b0.25n2/3/(log n)2·10
−10c

}
, a fixed function

of n. However, for the bias correction term R̂(2)
n in ÊS

(2)

pn , which is a function of the Hill (1975)

estimator, he uses a data-dependent choice of the intermediate sequence. We follow Hill’s (2015a)

recipe in the simulations for ÊS
(2)

pn .
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Figure 1: RMSE of ĈTM1(pn) (solid line) and ÊS
(2)

pn (dashed line) for AR(1)-GARCH(1, 1) model in
(a), GARCH(1, 1) in (b), i.i.d. draws from the Burr distribution with τ = 2 and λ = 0.75 in (c), and
with τ = 3 and λ = 0.5 in (d).

For the choice of k = kn in ĈTM1(pn) we again take a different tack and modify a data-adaptive

algorithm recently proposed by Dańıelsson et al. (2016). Their method is based on the following

considerations. Replacing pn by j/n in (9), the Pareto-type tail suggests – similarly as before –

the following estimate of the (1 − j/n)-quantile: x̂j/n = (k/j)γ̂kX(k+1). The quality of the Pareto-

approximation for this particular choice of k may now be judged by supj=1,...,kmax
|X(j+1) − x̂j/n|, i.e.,

a comparison of empirical quantiles and quantiles estimated using the Pareto-approximation. Here,

kmax indicates the range over which the fit is assessed. These considerations motivate the choice

k∗VaR = arg min
kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣X(j+1) − x̂j/n
∣∣∣] , (14)

where kmin is the smallest choice of k one is willing to entertain (see also below). While the choice

k∗VaR is well-suited conceptually for quantile estimation and ĈTM1(pn) is essentially a scaled quantile
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estimate, it may occasionally happen that γ̂k∗VaR
≥ 1, rendering ES estimates ĈTM1(pn) to be of

different sign than quantile estimates.

To avoid such a nonsensical result, we adapt the general idea behind the choice of k∗VaR to our

particular task of ES estimation. Instead of assessing the fit of the Pareto-motivated quantile esti-

mates to (nonparametric) empirical quantiles, we now assess the fit of Pareto-motivated ES estimates,

ĈTM1(j/n) = x̂j/n/(1 − γ̂k), to the nonparametric estimates ÊSj/n from (1). Then, by analogy, we

choose

k∗ES = arg min
kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣ÊSj/n − ĈTM1(j/n)
∣∣∣] . (15)

With this particular choice, an estimate γ̂k∗ES
≥ 1 was always avoided in our simulations. Since the

largest level we use is pn = 0.05, the requirement npn/kn = o(1) from (11) suggests kmin = b0.05 · nc.

Furthermore, we use kmax =
⌊
n0.9

⌋
. Following Hill (2010), we use the bandwidth γn = (k∗ES)0.25 for

σ̂2kn .

The RMSEs (calculated based on 10,000 replications) for time series of length n = 2000 are

displayed in Figure 1 for pn = 0.001, 0.002, . . . 0.05. The RMSEs for the (AR-)GARCH models in

panels (a) and (b) are similar.1 For levels pn between roughly 0.01 and 0.05, the estimator ÊS
(2)

pn is

slightly more accurate, possibly because the empirical distribution function is sufficiently informative

in this range. For smaller pn-values exploiting the Pareto form of the tails pays off with RMSEs up

to 10 times smaller for pn = 0.001. Panels (c) and (d) show the results for i.i.d. draws from the Burr

distribution. Here, the Pareto approximation holds quite accurately over a wide range of the support,

whence lower RMSEs result for all pn = 0.001, . . . , 0.05. In (d), where τ = 3, the relative advantage

of ĈTM1(pn) over ÊS
(2)

pn is larger, as expected due to the better fit to the Pareto approximation when

τ is larger.

Figure 1 suggests that for levels pn ≤ 0.01 the estimator ĈTM1(pn) generally is to be preferred.

Hence, we investigate coverage of our confidence corridors for the value pn = 0.01 and t ∈ [0.1, 1],

such that all quantiles in the range between 0.001 and 0.01 are covered. Following the suggestion

of Dańıelsson et al. (2016) for the choice of kn in (14) (and using a bandwidth of γn = (k∗VaR)0.25),

for 10,000 replications we have calculated coverage probabilities of the 90%-confidence corridor (13)

(where β = 0.1) for the above processes. For the AR(1)-GARCH(1, 1) model coverage was 71.5%, for

the pure GARCH(1, 1) 73.7%, for the Burr distribution with τ = 2 (τ = 3) 84.7% (89.1%). Coverage is

somewhat off target for the (AR-)GARCH models. However, in other applications of extreme quantile

estimation, pointwise confidence intervals have displayed some marked undercoverage on par with the

1The true value of the expected shortfall was calculated in all cases as in Hill (2015a, p. 17).
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values observed here (e.g., Drees, 2003; Chan et al., 2007). In view of this, the coverage of our uniform

confidence intervals is rather encouraging.

To shed further light on this, we also investigate pointwise coverage of VaR for p = 0.01, also

using Theorem 2. In this case, coverage is only slightly better with values 77.4%, 80.9%, 86.9% and

91.1%, respectively. This suggests that much of the estimation uncertainty lies in estimating the

smallest quantile (x0.01 in this case) and the extrapolation to smaller levels does not significantly

affect coverage. We thus conclude that the Pareto tail pins down the actual tail behavior very well,

particularly for the Burr distribution.

4 An application to extreme returns of VW shares

In this section we illustrate the use of Theorems 1 and 2 by calculating VaR corridors and ES estimates.

We do so for the n = 3490 log-losses of the German auto maker VW’s stock from March 27, 1995 to

October 24, 2008 downloaded from finance.yahoo.com. (If Pi denotes the adjusted closing prices, the

log-losses are defined as Xi = log(Pi−1/Pi). A similar analysis could of course be carried out for the

log-returns −Xi.) This period was chosen to precede the tumultuous week of trading in VW shares

from October 27, 2008 to October 31, 2008. Preceding this week, the sports car maker Porsche built

up a huge position in VW shares in a takeover attempt that ultimately failed. Porsche announced

on Sunday – October 26, 2008 – that it had indirect control of 74.1% of VW. Since the German

state of Lower Saxony owned another 20.2% of VW, this left short-sellers scrambling to buy the

remaining shares to close their positions. The shares closed at e 210.85 on Friday, October 24, more

than doubling on the next trading day – Monday, October 27 – to e 520, and again almost doubling

to e 945 on Tuesday. During a few minutes of trading on Tuesday, VW was the world’s most valuable

company. Wednesday then saw the shares almost halve in value, closing at e 517.

The magnitude of the log-returns from Monday, Tuesday and Wednesday of 0.904, 0.597 and

−0.603, respectively, is very large indeed if compared with previous historical returns, which are

displayed in Figure 2. In fact, a log-loss of 0.603 has not been observed before. Thus, one must assess

the magnitude of a previously unseen event, which provides a natural application of the extreme value

methods proposed in this paper.

To get a better sense of the significance of the log-loss of 0.603 we apply the methodology developed

in this paper. Before doing so, we check that Theorems 1 and 2 may reasonably be applied. To this

end we fit a standard AR(1)-GARCH(1, 1) model with skewed-t distributed innovations to the time

series. Visual inspection and standard Ljung-Box tests of the (raw and squared) standardized residuals

reveal that they may reasonably be considered i.i.d. and thus an adequate fit of our model. Under quite
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general conditions AR(1)-GARCH(1, 1) models are stationary and L2-E-NED (Hill, 2011, Sec. 4). At

this point one may argue that it is sufficient to estimate the model parameters and simulate long

sample paths of the estimated model often enough to obtain an estimate of VaR and ES. However,

this approach is dangerous in our extreme value setting. Drees (2008) has shown in the context of

extreme VaR estimation that even a slight misspecification of the model, that is not detectable by

statistical tests, can lead to distorted estimates. Thus, the main point of our model fitting exercise is

to show that a stationary time series model (here an AR(1)-GARCH(1, 1) process) provides a good

fit to the data at hand.

To the best of our knowledge, the Pareto-type tail assumption (4) has only been verified for the

smaller class of AR(1)-ARCH(1) models by Borkovec and Klüppelberg (2001), so it seems worthwhile

to check it empirically. To do so, we use the Pareto quantile plot of Beirlant et al. (1996). The idea is

to use (6), i.e., U(x) = xγLU (x). Since logLU (x)/ log x → 0 as x → ∞ (de Haan and Ferreira, 2006,

Prop. B.1.9.1), we obtain logU(x) ∼ γ log x. Thus, for small j, the plot of(
− log

(
j

n+ 1

)
, logX(j) ≈ logU((n+ 1)/j))

)
, j = 1, . . . , n,

should be roughly linear with positive slope γ > 0, if (4) holds with positive extreme value index.

Since some log-losses are negative, rendering logX(j) to be undefined, we only use the positive log-
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Figure 2: VW log-returns from March 27, 1995 to October 24, 2008
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losses for the Pareto quantile plot in panel (a) in Figure 3. A roughly linear behavior with positive

slope can be discerned from − log(j/(n+ 1)) = 2 onwards, but it is not quite satisfactory, as the Hill

plot of kn 7→ γ̂kn in panel (b) is highly unstable. A better approximation to linearity in the Pareto

quantile plot and more stable Hill estimates can often be obtained by a slight shift of the data. Here,

a positive shift of 0.05 sufficed, as the plots in (c) and (d) for the shifted data reveal. The positive

slope of the roughly linear portion in the Pareto quantile plot and the strictly positive and very stable

Hill estimates for kn up to 1000 strongly suggest a Pareto-type tail with positive tail index for the VW

log-losses. From the stable portion of the Hill plot in panel (d) we read off an estimate of the extreme

value index of γ̂ = 0.2. The 95%-confidence intervals for γ for different values of kn are indicated

by the shaded area in panel (d). They were computed using Hill (2010, Thm. 2) and σ̂kn ; see also

Equation (A.1) in the Appendix. The null hypothesis γ = 1, which would invalidate our analysis for

ES, is clearly rejected for kn. All in all, we are confident that Theorems 1 and 2 can be applied.
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Figure 3: Pareto quantile plot and Hill plot for raw log-losses (in (a) and (b)) and for log-losses
shifted by 0.05 (in (c) and (d)). The shaded area around the Hill estimates in panel (d) signifies
95%-confidence intervals.

Figure 4 displays the results, i.e., the VaR and ES estimates for levels between pn = 0.05 and

0.0001. In view of the much more stable Hill estimates (upon which our VaR and ES estimators are

based) for the shifted data in Figure 3, we carry out VaR and ES calculations for the shifted data and
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then subtract 0.05 from the results to arrive at estimates for the original series of log-losses. Because

choosing kn according to (15) ensures γ̂ < 1, we use k∗ES = 1060 to compute VaR and ES estimates.

Incidentally, from the Hill plot in panel (d) of Figure 3 the use of kn around a similar value of around

1000 seems sensible, because smaller values of kn lead to roughly the same estimate (yet a slower rate)

and for larger values the Hill plot is slightly upward trending, suggesting a possible bias. The choice

of pn = 0.05 is compatible with the theory requirement npn = o(kn), since npn = 3490 · 0.05 = 174.5

is small relative to kn = k∗ES = 1060.

In more detail, Figure 4 displays VaR estimates (solid line). As is customary in extreme value

theory, the risk level pn is not plotted directly, but rather the m-year return level; see, e.g., Coles (2001,

Sec. 4.4.2). Since there are approximately 250 trading days in a year, a probability of pn = 1/250

corresponds to a return period of 1 year. Thus, the return level with return period of 1 year is, on

average, only exceeded once a year. Similarly, the 2-year return period corresponds to pn = 1/500,

and so forth. As is also customary, we plot the return period on a log-scale to zoom in on the very

large return periods that are of particular interest in risk management. The estimated and empirical

data (calculated simply as X(bnpnc+1)) are in reasonable agreement, strengthening further the belief

that our methods are appropriate.

Most empirical estimates lie within the 95%-confidence corridor for VaR at different levels (grey

area in Figure 4) calculated from Theorem 2. It has the interpretation that the null hypothesis that

the true xpn(t) lies in this grey area (for t = [0.002, 1] and pn = 0.05) cannot be rejected at the 5%

level. In this sense, it provides an informative description of the tail region.

The dashed line in Figure 4 indicates ES estimates. As the expected loss given a VaR exceedance,

the ES estimates provide further insight on the tail behavior. All in all, nothing in Figure 4 suggests

that a log-loss of 0.603 was to be expected. Even ES estimates for a return period of 40 years do not

come close to this value. Of course, further extrapolation of VaR and ES estimates in Figure 4 would

be possible to see for which return period a return level of 0.603 is obtained. However, in view of

the restriction on pn imposed by (11) (see also Remark 2) and related applications of extreme value

theory (Drees, 2003), we feel that extrapolation well beyond a level of pn = 0.0001 ≈ 1/(2.87 · n) is

no longer justified.

5 Summary

Our first main contribution is to derive central limit theory for a wide range of popular risk measures,

including VaR and ES, in time series. As in Linton and Xiao (2013) and Hill (2015a), we do so under

a Pareto-type tail assumption. Yet, we exploit the Pareto approximation to motivate an estimator
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Figure 4: Return level plot for VW log-losses (solid line). Grey area indicates 95%-confidence corridor
for return levels. ES estimates shown as the dashed line.

of (among other risk measures) ES, whereas Linton and Xiao (2013) consider a non-parametric ES

estimator and Hill (2015a) only uses the Pareto assumption for bias correction of his tail-trimmed ES

estimator. Asymptotic theory is derived under an E-NED property, which is significantly more general

than the geometrically α-mixing assumption of Linton and Xiao (2013) and Hill (2015a). It is shown

in simulations that our estimator (which fully takes into account the regularly varying tail) provides

better estimates in terms of RMSE than Hill’s (2015a) proposal (which only does so partially). Our

second main contribution is to derive uniform confidence corridors for VaR and also the other risk

measures covered by our analysis. Furthermore, we propose a method for choosing the sample fraction

kn used in the estimation of ES, which is used in the simulations. Finally, we illustrate our procedure

with VW log-losses prior to the takeover attempt by Porsche.
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Appendix

Proof of Theorem 1: From Hill (2010, Thm. 2) we get
√
kn
σkn

(γ̂ − γ)
D−→

(n→∞)
N (0, 1). (A.1)
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Note that Hill’s (2010) Assumption B (required in his Thm. 2) can be seen to be implied by Assump-

tion 1. Concretely, write (7) in terms of the slowly varying function L(·) from (5) to obtain

lim
x→∞

L(λx)
L(x) − 1

A(x)
=
λρ/γ − 1

γρ
,

where A(·) is a function with bounded increase due to A(·) ∈ RVρ/γ for ρ/γ < 0 (de Haan and Ferreira,

2006, Thm. B.3.1). Also note that lim infn→∞ σkn > 0 by arguments in Hill (2010, Sec. 3.2).

Hence, from (A.1) and arguments in the proof of de Haan and Ferreira (2006, Thm. 4.3.9), we get

1

σkn

√
kn

log dn

(
x̂pn
xpn
− 1

)
D−→

(n→∞)
N (0, 1). (A.2)

Here we have also used that √
kn

(
X(kn+1)

U(n/kn)
− 1

)
= OP (1)

from Hill (2010, Lem. 3) and the fact that log(x) ∼ x− 1, as x→ 1. Next we show that

√
kn

log dn

(
ĈTMa(pn)

CTMa(pn)
− 1

)
=

√
kn

log dn

(
x̂apn
xapn
− 1

)
+ oP (1). (A.3)

To do so expand

√
kn

log dn

(
ĈTMa(pn)

CTMa(pn)
− 1

)
=

√
kn

log dn

 x̂apn
xapn
· 1− aγ

1− aγ̂
·

xapn
1−aγ

CTMa(pn)
− 1

 (A.4)

By (A.1),

1− aγ
1− aγ̂

= 1 +OP (1/
√
kn). (A.5)

From Pan et al. (2013, Thm. 4.2),

lim
n→∞

1

A
(
U(1/pn)

) (CTMa(pn)

xapn
− 1

1− aγ

)
=

a

(1/γ − a)(1/γ − a− ρ)
.

Since U(n/kn) = O
(
U(1/pn)

)
(due to npn = o(kn) from (11) and monotonicity of U(·)), we have

A
(
U(1/pn)

)
= O

(
A
(
U(n/kn)

))
= o(1/

√
kn),

implying together that

CTMa(pn)
xapn
1−aγ

− 1 = o

(
1√
kn

)
. (A.6)

Combining (A.4) – (A.6), (A.3) follows.

In view of (A.3) and
∣∣∣σ̂2kn − σ2kn∣∣∣ = oP (1) (Hill, 2010, Thm. 3), it suffices to prove the claim of the
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theorem for the sequence of random vectors

1

σkn

√
kn

log dn

( x̂ajpn
x
aj
pn

− 1

)
j=1,...,J

,

(
x̂pn
xpn
− 1

)′ .
Let b1, . . . , bJ+1 ∈ R. Then, using a Cramér-Wold device, it suffices to consider

1

σkn

√
kn

log dn

J+1∑
j=1

bj

(
x̂
aj
pn

x
aj
pn

− 1

)
.

(Recall aJ+1 = 1.) Invoking a Skorohod construction (e.g., de Haan and Ferreira, 2006, Thm. A.0.1)

similarly as in de Haan and Ferreira (2006, Example A.0.3), we may assume that the convergence in

(A.2) holds almost surely (a.s.) on a different probability space:

1

σkn

√
kn

log dn

(
x̂pn
xpn
− 1

)
a.s.−→

(n→∞)
Z ∼ N (0, 1).

(Note the slight abuse of notation here.) A Taylor expansion of the functions fj(x) = xaj around 1

thus implies

1

σkn

√
kn

log dn

J+1∑
j=1

bj

(
x̂
aj
pn

x
aj
pn

− 1

)
a.s.−→

(n→∞)

J+1∑
j=1

bjajZ.

Going back to the original probability space, the conclusion follows. �

Proof of Theorem 2: Since log(1 + x) ∼ x as x→ 0, it suffices to show

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|.

Due to x̂pn(t) = x̂pnt
−γ̂ and log dn(t)/ log dn = 1 + o(1) uniformly in t ∈ [t, t], we can expand

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)
= (1 + o(1))

√
kn

log dn

(
x̂pn
xpn

tγ−γ̂
xpn
xpn(t)

t−γ − 1

)
. (A.7)

Apply the mean value theorem with (∂/∂x)tx = tx log(t) to derive tγ−γ̂ = 1 + (γ − γ̂)tν(γ−γ̂) for some

ν ∈ [0, 1]. Since γ − γ̂ = OP (1/
√
kn), this implies

tγ−γ̂ = 1 +OP (1/
√
kn) uniformly in t ∈ [t, t]. (A.8)

Writing (7) in terms of the quantile function U(·), we obtain from de Haan and Ferreira (2006,

Thm. 2.3.9) that uniformly in t ∈ [t, t],∣∣∣∣∣xpn(t)

xpn
− t−γ

∣∣∣∣∣ =

∣∣∣∣∣U
(
1/(pnt)

)
U
(
1/pn

) − t−γ∣∣∣∣∣ = O
(
A(U(1/pn))

)
= O

(
A(U(n/kn))

)
= o(1/

√
kn). (A.9)
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Here we have also used that n/kn = o(1/pn) by (11). Combining (A.7) with (A.8) and (A.9) gives

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)
=

√
kn

log dn(t)

(
x̂pn
xpn
− 1

)
+ oP (1) uniformly in t ∈ [t, t].

The conclusion now follows from Theorem 1. �
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