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Abstract

A wide range of risk measures can be written as functions of conditional tail moments and Value-

at-Risk, for instance the Expected Shortfall. In this paper we derive joint central limit theory for

semi-parametric estimates of conditional tail moments, including in particular Expected Shortfall,

at arbitrarily small risk levels. We also derive confidence corridors for Value-at-Risk at different

levels far out in the tail, which allows for simultaneous inference. We work under a semi-parametric

Pareto-type assumption on the distributional tail of the observations and only require an extremal-

near epoch dependence assumption on the serial dependence. In simulations, our semi-parametric

Expected Shortfall estimate is often shown to be more accurate in terms of mean absolute deviation

than extant non- and semi-parametric estimates. An empirical application to the extreme swings

in VW log-returns during the failed takeover attempt by Porsche illustrates the proposed methods.

Keywords: Confidence Corridor, Expected Shortfall, E-NED, Pareto-type Tails, Value-at-Risk

JEL classification: C12 (Hypothesis Testing), C13 (Estimation), C14 (Semiparametric and Non-

parametric Methods)

1 Motivation

The need to quantify risk, defined broadly, has lead to a burgeoning literature on risk measures.

Two of the most popular risk measures in the financial industry are the Value-at-Risk (VaR) at level

p ∈ (0, 1), defined as the upper p-quantile of the distribution of losses X, VaRp = F←(1 − p), and

the Expected Shortfall (ES) at level p, defined as the expected loss given an exceedance of VaRp,

ESp = E
[
X
∣∣ X > VaRp

]
. ES is defined if E |X| < ∞ and is sometimes also called conditional tail

expectation or tail-VaR. In contrast to ES, VaR is not a coherent risk measure in the sense of Artzner

et al. (1999) and is uninformative as to the expected loss beyond the VaR. Yet, VaR is easy to estimate

and to backtest (e.g., Dańıelsson, 2011).

A unifying perspective on VaR, ES and a wide range of other popular risk measures was presented

by El Methni et al. (2014). They introduced the conditional tail moment (CTM), i.e., the a-th

moment (a > 0) of the loss given a VaRp-exceedance, CTMa(p) = E
[
Xa

∣∣ X > VaRp

]
. For a = 1,

the conditional tail moment is simply the ES. For an appropriate choice of a < 1 the conditional

tail moment may still be used for extremely heavy-tailed time series with E |X| = ∞, when ES can

no longer be used. For instance, there is evidence that economic losses in the aftermath of natural

disasters have infinite means (Ibragimov et al., 2009; Ibragimov and Walden, 2011). El Methni et al.

(2014) showed that many risk measures are functions of VaR and CTMs. Hence, by virtue of the

continuous mapping theorem, weak limit theory for estimators of these risk measures can be grounded

on joint asymptotics of VaR and CTM estimates.
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Denote the ordered observations of a time series X1, . . . , Xn by X(1) ≥ . . . ≥ X(n). While – in the

spirit of El Methni et al. (2014) – we develop limit theory for many risk measures, we shall frequently

focus on our estimator of ES or, equivalently, CTM1(p). ES estimation for time series is a topic of recent

interest, yet the literature almost exclusively focuses on the case where E |Xi|2 <∞; see, e.g., Scaillet

(2004), Chen (2008). However, evidence for infinite variance models is wide-spread. For instance,

IGARCH models have a tail index equal to 2 and hairline infinite variance (Ling, 2007, Thm. 2.1 (iii)).

We refer to Engle and Bollerslev (1986) and the references therein for evidence of the plausibility of

IGARCH models for exchange rates and interest rates. Infinite variance phenomena can be found

more generally in, e.g., insurance and internet traffic applications (Resnick, 2007, Examples 4.1 &

4.2), and emerging market stock returns and exchange rates (Hill, 2013, 2015a).

To the best of our knowledge, only Linton and Xiao (2013) and Hill (2015a) avoid a finite variance

assumption for ES estimation of time series. Linton and Xiao (2013) essentially study a simple non-

parametric estimate of ES,

ÊSp =
1

pn

n∑
i=1

XiI{Xi≥X(bpnc)}, (1)

where IA denotes the indicator function for a set A, and b·c rounds to the nearest smallest integer.

Linton and Xiao (2013) assume regularly varying tails:

P
{
|Xi| > x

}
= x−1/γL(x), where L(·) is slowly varying, i.e., lim

y→∞

L(xy)

L(x)
= 1 ∀ x > 0. (2)

In the case of the Pareto Type I distribution, L(·) is identically a constant, which is why distributions

with (2) may be said to be of Pareto-type. Concretely, Linton and Xiao (2013) impose γ ∈ (1/2, 1).

Since moments of order greater than or equal to 1/γ do not exist but smaller ones do (de Haan and

Ferreira, 2006, Ex. 1.16), this rules out infinite-mean models by γ < 1 (in which case ES does not exist

anyway) and finite variance models by γ > 1/2. For geometrically strong-mixing {Xi}, they derive

the stable limit of n1−γ(ÊSp−ESp), which however depends on the unknown γ. For feasible inference,

they consider a subsampling procedure.

Hill (2015a), who also works with geometrically strong-mixing random variables (r.v.s), considers

a tail-trimmed estimate

ÊS
(∗)
p =

1

pn

n∑
i=1

XiI{X(kn)≥Xi≥X(bpnc)}, (3)

where the integer trimming sequence 1 ≤ kn < n tends to infinity with kn = o(n). This improves the

convergence rate to
√
n/g(n) for some slowly varying function g(n) → ∞ if γ ∈ [1/2, 1). His results

also extend to γ < 1/2, where he obtains the standard
√
n-rate. In both cases, Hill (2015a) delivers
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standard Gaussian limit theory, although – in contrast to Linton and Xiao (2013) – he requires a

second-order refinement of (2). To deal with possibly non-vanishing bias terms that may arise due to

trimming, Hill (2015a) exploits regular variation and proposes an ES estimator ÊS
(2)

p = ÊS
(∗)
p + R̂(2)

n

with some optimal bias correction R̂(2)
n .

Despite working under a semi -parametric Pareto-tail assumption as in (2), Linton and Xiao (2013)

and Hill (2015a) (essentially) only consider non-parametric estimators of ES, viz., ÊSp and ÊS
(2)

p . Only

Hill (2015c) exploits assumption (2) for purposes of bias correction via R̂(2)
n in the ES estimate ÊS

(2)

p .

In this paper we take a different tack and use (2) as a motivation for a truly semi -parametric estimate of

ES, and indeed more generally of CTMs. In a regression environment with covariates and independent,

identically distributed (i.i.d.) observations, similar estimators have been studied by El Methni et al.

(2014).

Our first main contribution is to derive the joint weak Gaussian limit of our VaR and CTM

estimators under a general notion of dependence, covering and significantly extending the geometrically

strong-mixing framework of Linton and Xiao (2013) and Hill (2015a). Thus, not only do we cover

estimators of ES (as Linton and Xiao, 2013, and Hill, 2015a, do), but also – among others – those of

VaR, conditional tail variance (Valdez, 2005) and conditional tail skewness (Hong and Elshahat, 2010);

see El Methni et al. (2014). In our extreme value setting, we necessarily require that p = pn → 0 as

n → ∞, thus disadvantaging our estimator in a direct comparison of the convergence rates obtained

by Linton and Xiao (2013) and Hill (2015a) for ÊSp and ÊS
(2)

p ; see also Remark 6 below. Nonetheless,

we obtain a convergence rate that can improve the n1−γ-rate for ÊSp. While the
√
n/g(n)-rate of

ÊS
(2)

p cannot be beaten, we show in simulations that our estimator often has a lower mean absolute

deviation (MAD). This is true for a wide range of values p ∈ [0.001, 0.05], where – quite expectedly,

as we focus on p = pn → 0 – the relative advantage becomes larger, the smaller p.

Our second main contribution is to derive confidence corridors for VaR at different levels. This

is important because ‘[i]n financial risk management, the portfolio manager may be interested in

different percentiles [...] of the potential loss and draw some simultaneous inference. This type of

information provides the basis for dynamically managing the portfolio to control the overall risk at

different levels’ (Wang and Zhao, 2016, p. 90). Working with VaR – albeit conditioned on past returns

– Wang and Zhao (2016) derive a functional central limit theorem for VaR estimates indexed by the

level p ∈ [δ, 1− δ] for some δ > 0. While Wang and Zhao (2016, Rem. 2) conjecture that an extension

to the interval p ∈ (0, 1) may be possible, their current results exclude the tails of the distributions,

which are of particular interest in risk management. We fill this gap in the present extreme value

setting, where the tail is the natural focus.
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For estimators that, like ours, are motivated by extreme value theory (EVT) the choice of the

number of upper order statistics (typically denoted by kn) to use is always tricky; see, e.g, Resnick

(2007, Sec. 4.4) and Mancini and Trojani (2011, Sec. 1.4). As a third contribution, we adapt a recently

proposed method for choosing kn by Dańıelsson et al. (2016) to the particular task of ES estimation.

This approach works quite well in simulations in the sense that it yields estimates of CTM1(pn) that

are often preferable to other popular competitors in terms of MAD.

We remark that we focus on unconditional, instead of conditional (upon past observations) risk

measures. Both types of measures have their distinct uses. While conditional risk measures (issued

from, e.g., GARCH-type models) are calculated on a daily basis by risk managers in banks to adapt to

ever evolving market conditions, unconditional risk measures are used for longer-term risk assessments.

For instance, unconditional risk measures can be used to judge the severity of historic stock market

crashes (Novak and Beirlant, 2006). Gupta and Liang (2005) use (unconditional) VaR estimators

from EVT to examine whether hedge funds are adequately capitalized to avoid bankruptcy. To

assess the long-term viability of financial institutions, regulators indeed require (unconditional) VaR

estimates. Under the Solvency II Directive, insurers are required to report VaR at level 99.5% and as

a measure for default risk banks even have to calculate VaR at level 99.9%, as set out by the Basel

Committee on Banking Supervision (2016). At these extreme levels, calculation of risk measures

naturally calls for EVT-based procedures like the ones investigated in this paper. For more discussion

on the relative merits of conditional and unconditional risk measures, we refer to Hoga (2017b, p. 25)

and the references therein.

We also remark that the methods for unconditional risk measure estimation – developed in this

paper – can be fruitfully used in calculating conditional risk measures as well. For conditional VaR

and ES estimation, McNeil and Frey (2000) were the first to propose using (unconditional) EVT-based

methods after a preliminary step of filtering out time-varying volatility. Their approach has been found

to work well in a comparative study by Kuester et al. (2006) and has since been refined by Mancini and

Trojani (2011), who robustify both the model estimation stage (required to extract volatility estimates)

and the VaR estimation of the residual process with volatility filtered out. Note that in standard

GARCH models, asymptotic normality of Gaussian quasi-maximum likelihood estimation (QMLE)

requires existing fourth moments of the innovations. Thus, since innovations may possess heavier

tails, estimators that are robust to heavy-tailed innovations may be required for model estimation;

see, e.g., Hill (2015b). We illustrate how our estimators may be used to calculate conditional risk

measures in an empirical application. Deriving the asymptotic properties of these estimators is under

active current investigation.
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The rest of the paper proceeds as follows. Section 2 states the main theoretical results and is

structured as follows. Subsection 2.1 introduces the estimator as well as the dependence concept

we work with. The next Subsection 2.2 derives joint central limit theory for CTMs and VaR. In

Subsection 2.3 we obtain confidence corridors for VaR at different levels, allowing for simultaneous

inference. In the simulations in Section 3, the finite-sample performance of our ES estimator is

compared with several non- and semi-parametric competitors in terms of MAD. Section 4 applies the

results to the time series of VW log-returns to judge the severity of the losses during the attempted

takeover by Porsche, that ultimately failed. The final Section 5 concludes. Proofs are relegated to the

Appendix.

2 Main results

2.1 Preliminaries

Let {Xi} be a strictly stationary sequence of non-negative r.v.s. As is customary in extreme value

theory, we study the right tail. In practice, non-negativity may be achieved via a simple transforma-

tion, e.g., XiI{Xi≥0} or −XiI{−Xi≥0} if interest centers on the right or left tail, respectively. Define

the survivor function F (·) = 1 − F (·), where F denotes the distribution function of X1. We assume

regularly varying tails F (·) ∈ RV−1/γ , i.e.,

lim
x→∞

F (λx)

F (x)
= λ−1/γ ∀ λ > 0, (4)

where γ > 0 is called the extreme value index and α = 1/γ the tail index. Note that (4) is equivalent

to

F (x) = x−1/γL(x), where L(·) is slowly varying. (5)

This in turn is equivalent to (de Haan and Ferreira, 2006, p. 25)

U(x) = xγLU (x), where U(x) = F←(1− 1/x) and LU (·) is slowly varying. (6)

Since (4) is an asymptotic relation, we require an intermediate sequence kn →∞ with kn = o(n) and

1 ≤ kn < n for statistical purposes. This sequence kn determines the number of upper order statistics

used for estimating γ and is restricted by the following assumption.

Assumption 1. There exists a function A(·) with limx→∞A(x) = 0 such that for some ρ < 0

lim
x→∞

F (λx)

F (x)
− λ−1/γ

A(x)
= λ−1/γ

λρ/γ − 1

γρ
∀ λ > 0. (7)
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Additionally,
√
knA

(
U(n/kn)

)
−→ 0, as n→∞.

Remark 1. Assumption 1 controls the speed of convergence in (4) and is consequently referred to

as a second-order condition in EVT. Equivalently, it may also be written in terms of the quantile

function U(·) from (6) (see de Haan and Ferreira, 2006, Thm. 2.3.9). In this form, it is widely-used

in tail index (e.g., Einmahl et al., 2016; Hoga, 2017a) and extreme quantile estimation (e.g., Chan

et al., 2007; Hoga, 2017b). Examples of d.f.s satisfying Assumption 1 are abundant. For instance,

d.f.s expanding as

F (x) = c1x
−1/γ + c2x

−1/γ+ρ/γ (1 + o(1)
)
, x→∞, (c1 > 0, c2 6= 0, γ > 0, ρ < 0) (8)

fulfill Assumption 1 with the indicated γ and ρ, and kn = o(n−2ρ/(1−2ρ)) (de Haan and Ferreira, 2006,

pp. 76–77). The more negative ρ, the closer the tail is to actual Pareto decay (ρ = −∞). In the Pareto

case, kn = o(n) can be chosen quite large, which is desirable because more observations can be used

in estimation; cf. Remark 6. The expansion in (8) is satisfied by, e.g., the Student t(ν)-distribution

with γ = 1/ν and ρ = −2, where ν > 0 denotes the degrees of freedom.

Define xp = F←(1 − p) as the (1 − p)-quantile for short. Most of the literature, including Linton

and Xiao (2013) and Hill (2015a), focuses on the case where p ∈ (0, 1) is fixed. EVT however allows for

p = pn → 0 as n→∞. Approximations derived from EVT often provide better approximations when

p is small – the case of particular interest in risk management –, as they take the semi-parametric tail

(4) into account. The following two motivations show how regular variation of the tail is taken into

account.

First, we use the regular-variation assumption (4) to estimate xpn in CTMa(pn) = E
[
Xa

∣∣ X > xpn
]

as follows. Note that pn can be very small, such that xpn may lie outside the range of observations

X1, . . . , Xn. Then, the idea is to base estimation of xpn on a less extreme (in-sample) quantile xkn/n

and use (4) to extrapolate from that estimate. Concretely, set x = xkn/n, λ = xpn/xkn/n and use (4)

as an approximation to obtain (
xpn
xkn/n

)−1/γ
≈ 1− F (xpn)

1− F (xkn/n)
≈ npn

kn
. (9)

Replacing population quantities (γ and xkn/n) with empirical quantities (γ̂ andX(kn+1)), this motivates

the so-called Weissman (1978) estimator x̂pn = dγ̂nX(kn+1), where dn = kn/(npn). It has been used in,

e.g., Drees (2003), Chan et al. (2007), and Hoga and Wied (2017). Of course, there is a wide range of
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estimators γ̂. We use the Hill (1975) estimator

γ̂ = γ̂kn =
1

kn

kn∑
i=1

log
(
X(i)/X(kn+1)

)
in the following, which is arguably the most popular one (see, e.g., Hsing, 1991; Hill, 2010, and the

references therein).

For the second approximation we exploit (4) once again. Together with Theorem 4.1 of Pan et al.

(2013), which was obtained from Karamata’s theorem, this assumption implies CTMa(pn) ∼ xapn
1−aγ

as n → ∞. Asymptotic equivalence, an ∼ bn, is defined as limn→∞ an/bn = 1. Thus, the following

estimate suggests itself:

ĈTMa(pn) :=
x̂apn

1− aγ̂
. (10)

This estimator accounts for the regular variation both in estimating xpn (through (9)) as well as in

calculating the expected loss above xpn (through CTMa(pn) ∼ xapn
1−aγ ).

Next, we introduce a sufficiently general dependence concept. The asymptotic behavior of ĈTMa(pn)

crucially relies on that of γ̂ (see the proof of Theorem 1). To the best of our knowledge, the most

general conditions under which extreme value index estimators have been studied are those in Hill

(2010). He develops central limit theory for the Hill (1975) estimator under L2-extremal-near epoch

dependence (L2-E-NED). Similar to the mixing conditions of Hsing (1991), dependence is restricted

only in the extremes. However, the NED property is often more easily verified (e.g., for ARMA–

GARCH models) and offers more generality, whereas mixing conditions are typically harder to verify

and some simple time series models fail to be mixing Andrews (1984).

For the following introduction to E-NED, it will be illustrative to keep an ARMA(p, q)–GARCH(p, q)

model {Xi} in mind. It is generated by the ARMA(p, q) structure

Xi = µ+

p∑
t=1

φtXi−t +

q∑
t=1

θtεi−t + εi, (11)

which is driven by a GARCH(p, q) process {εi}, i.e.,

εi = σiUi, where σ2i = ω +

p∑
t=1

αtε
2
i−t +

q∑
t=1

βtσ
2
i−t. (12)

In the following, dependence is restricted separately in the errors {εi} and the actual observed process

{Xi}.

Consider a process {εi} (the GARCH process in the above example) and a possibly vector-

valued functional of it,
{
En,i

}
n∈N;i=1,...,n

. The array nature of En,i allows for tail functionals, such
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as En,i = I{εi>an,i} for some triangular array an,i → ∞ as n → ∞. The En,i induce σ-fields

F tn,s = σ
(
En,i : s ≤ i ≤ t

)
(where En,i = 0 for i /∈ {1, . . . , n}), which can be used to restrict de-

pendence in {εi} using the mixing coefficients

εn,qn := sup
A∈Fi

n,−∞, B∈F∞n,i+qn
: i∈Z

∣∣P (A ∩B)− P (A)P (B)
∣∣ ,

ωn,qn := sup
A∈Fi

n,−∞, B∈F∞n,i+qn
: i∈Z

∣∣P (B|A)− P (B)
∣∣ .

Here, {qn} ⊂ N is a sequence of integer displacements with 1 ≤ qn < n and qn → ∞. We then say

that {εi} is F-strong (uniform) mixing with size λ > 0 if

(n/kn)qλnεn,qn −→
(n→∞)

0

(
(n/kn)qλnωn,qn −→

(n→∞)
0

)
.

Given {εi} thus restricted, it remains to restrict dependence in the observed series {Xi} (the

ARMA–GARCH process in the above example). Hill (2010) shows that the asymptotics of the Hill

(1975) estimator can be grounded on tail arrays
{
I{Xi>bneu}

}
, where bn = U(1 − kn/n). Hence,

dependence in {Xi} only needs to be restricted via
{
I{Xi>bneu}

}
. This is achieved by assuming that,

for some p > 0, {Xi} is Lp-E-NED on
{
F in,1

}
with size λ > 0, i.e.,∥∥∥∥I{Xi>bneu} − P

{
Xi > bne

u
∣∣∣ F i+qnn,i−qn

}∥∥∥∥
p

≤ fn,i(u) · ψqn ,

where fn,i : [0,∞) → [0,∞) is Lebesgue measurable, supi=1,...,n supu≥0 fn,i(u) = O
(

(kn/n)1/p
)

, and

ψqn = o(q−λn ). For more on this dependence concept, we refer to Hill (2009, 2010, 2011).

Assumption 2. {Xi} is L2-E-NED on
{
F in,1

}
with size λ = 1/2. The constants fn,i(u) are integrable

on [0,∞) with supi=1,...,n

∫∞
0 fn,i(u)du = O(

√
kn/n). The base {εi} is either F-uniform mixing with

size r/[2(r − 1)], r ≥ 2, or F-strong mixing with size r/(r − 2), r > 2.

The final assumption we require is

Assumption 3. The covariance matrix of
1√
kn

∑n
i=1

[
log(Xi/bn)+ − E log(Xi/bn)+

]
1√
kn

∑n
i=1

[
I{
Xi>bneu/

√
kn

} − P {Xi > bne
u/
√
kn
}]


is positive definite uniformly in n ∈ N for all u ∈ R. Here, x+ := max(x, 0).

Assumptions 2 and 3 are identical to Assumptions A.2 and D in Hill (2010), whereas Assumption 1

is stronger than the corresponding Assumption B in Hill (2010). Assumption 3 is used to show

consistency of estimates of the asymptotic variance of the Hill (1975) estimator in Hill (2010, Thm. 3).
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This estimator, σ̂2kn , appears in Theorem 1, because the asymptotics of x̂pn are grounded on those of

γ̂; see the proof of Theorem 1. The strengthening of Assumption B of Hill (2010) in Assumption 1 is

required to derive limit theory for x̂pn , similarly as in the proof of Thm. 4.3.9 in de Haan and Ferreira

(2006).

2.2 Limit theory for extreme conditional tail moments

Theorem 1. Let a1, . . . , aJ be positive and aJ+1 = 1. Assume that

npn = o(kn) and log(npn) = o(
√
kn). (13)

Suppose that Assumption 1 is met for 0 < γ < max{a1, . . . , aJ+1}. Suppose further that Assumptions 2

and 3 are met. Then,

1

σ̂kn

√
kn

log dn


 ĈTMaj (pn)

CTMaj (pn)
− 1


j=1,...,J

,

(
x̂pn
xpn
− 1

)
′

(14)

converges in distribution to a zero-mean Gaussian limit with covariance matrix Σ = (aiaj)i,j∈{1,...,J+1}.

In (14),

σ̂2kn :=
1

kn

n∑
i,j=1

w

(
s− t
γn

)log

max

{
Xi

X(kn+1)
, 1

}− kn
n
γ̂


log

max

{
Xj

X(kn+1)
, 1

}− kn
n
γ̂


is a kernel-variance estimator with Bartlett kernel w(·), bandwidth γn → ∞ with γn = o(n), and

kn/
√
n→∞.

Remark 2. Condition (13) restricts the decay of pn → 0. There, pn = o(kn/n) describes the upper

bound, required for the EVT approach to make sense, whereas log
(
(n/kn)pn

)
= o

(
log(npn)

)
= o(
√
kn)

prohibits pn from decaying to zero too fast and thus describes the boundary, where extrapolation

becomes infeasible.

Remark 3. The estimator σ̂2kn is due to Hill (2010, Sec. 4). Other possible choices for the kernel w(·)

include the Parzen, quadratic spectral and Tukey-Hanning kernel.

Remark 4. It is interesting to contrast Theorem 1 with the fixed-p result in Linton and Xiao (2013).

There, replacing the estimate X(bpnc) with the true quantile xp in (1) does not change the limit

of n1−γ(ÊSp − ESp) and the joint distribution of the VaR and the ES estimate is asymptotically

independent (Linton and Xiao, 2013, pp. 778–779). In our case where p = pn → 0, the ES estimate is

essentially the VaR estimate by (10) and the limit distributions of both estimates are perfectly linearly

dependent by (A.3) in the Appendix.
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Remark 5. The result of Theorem 1 is sufficient to deliver weak limit theory not only for estimates

of VaR and ES, but also for a wide range of other risk measures, e.g., the conditional tail variance,

conditional tail skewness, conditional VaR. For terminology and more detail, we refer to El Methni

et al. (2014).

Remark 6. It may be instructive to compare the rate of convergence in Theorem 1 for our ES

estimator ĈTM1(pn) with the rates of ÊSp and ÊS
(2)

p . As pointed out in Remark 4, for γ ∈ (1/2, 1)

Linton and Xiao (2013) obtained a rate of n1−γ for ÊSp. Up to slowly varying terms, Hill (2015a)

improves this rate to
√
n for ÊS

(2)

p and general γ < 1. Recalling from remarks above equation (10)

that CTM1(pn) ∼ U(1/pn)/(1− γ), Theorem 1 implies

1− γ
σ̂kn

√
kn

(log dn)U(1/pn)

(
ĈTM1(pn)− CTM1(pn)

)
D−→

(n→∞)
N(0, 1). (15)

In order to specify the rate in (15) more precisely, we assume (8). To maximize the rate, we choose

kn as large as allowed by Assumption 1, i.e., kn = n1−δ/g(n) = o(n−2ρ/(1−2ρ)) for δ = 1/(1− 2ρ); see

Remark 1. Here, g(·) denotes an arbitrary slowly varying function with g(n) −→
(n→∞)

∞ as slowly as

desired; e.g., g(n) = logn or g(n) = log(log n). Since pn → 0 in our framework such that U(1/pn)→∞

in the denominator of the left-hand side of (15), CTM1(pn) is at a disadvantage compared with ÊSp

and ÊS
(2)

p , where p ∈ (0, 1) is fixed. So to make the comparison fairer, we choose the slowest possible

rate for pn allowed by npn = o(kn) from (13). Concretely, we set pn = kn/(n · g(n)) = 1/(nδg2(n)).

So the rate in (15) is given by

√
kn

(log dn)U(1/pn)

(6)
=
√
n

n−δ/2pγn√
g(n)(log kn/(npn))LU (1/pn)

=
√
n

n−δ(1/2+γ)√
g(n)(log g(n))LU (1/pn)g(n)2γ

.

Hence, up to terms of slow variation, the rate is given by n−δ(1/2+γ)+1/2.

Two intuitive observations can be made. First, the larger γ (i.e., the heavier the tail), the slower the

rate of convergence. This is to be expected, because the Hill estimate γ̂ (upon which our asymptotic

results rest) has larger variance for larger γ – everything else being equal. For instance, for the t(ν)-

distribution with γ = 1/ν and ρ = −2, one may choose kn = o(n−2ρ/(1−2ρ)) = o(n4/5) irrespective

of the degrees of freedom ν; see again Remark 1. Then, for i.i.d. observations with d.f.s satisfying

Assumption 1, de Haan and Ferreira (2006, Thm. 3.2.5) implies
√
kn(γ̂kn−γ)

D−→ N(0, γ2), as n→∞,

which shows that the asymptotic variance is larger the heavier the tail, i.e., the larger γ.

Second, the more negative ρ, the smaller δ = 1/(1 − 2ρ) > 0 and hence the faster the rate. This

result is also expected, since a more negative ρ implies a better fit to true Pareto behavior and hence

more upper order statistics can be used for tail estimation by Remark 1. So the more closely the actual

tail resembles the Pareto shape, the better the estimators derived from Theorem 1 can be expected
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to work relative to non-parametric estimates.

So under the caveat that ĈTM1(pn) is at a disadvantage, a direct comparison of the convergence

rates reveals the following. While the
√
n-rate (up to terms of slow variation) of ÊS

(2)

p cannot be

obtained, the n1−γ-rate of ÊSp can be improved upon. For instance, for the tν-distribution (where,

again, γ = 1/ν and ρ = −2) we obtain a rate – up to terms of slow variation – of n−δ(1/2+γ)+1/2 =

n1/5(2−γ), which is faster (slower) than n1−δ for γ > 3/4 (γ < 3/4), i.e., for heavier (lighter) tails.

Remark 7. The above observation that ES estimation with ĈTM1(pn) is more difficult the heavier the

tail, also holds for the non-parametric estimate ÊSp. This not only holds for the infinite variance case,

where the n1−γ-rate decays the heavier the tail (i.e., the larger γ), but also for the finite variance case

with a
√
n-rate; cf. Table 1. We refer to Yamai and Yoshiba (2002) for some supporting simulation

evidence and some nice intuition. We also refer to Csörgő et al. (1991) for some necessary and

sufficient conditions for a central limit theorem to even hold for ÊSp under an i.i.d. assumption. We

are not aware of similar results for our ES estimator ĈTM1(pn). However, there exist well-known

necessary and sufficient conditions for asymptotic normality of the Hill (1975) estimator, upon which

our asymptotic results are based; see Geluk et al. (1997) and the references therein.

2.3 Simultaneous inference on VaR

Working with VaR conditioned on past returns, Wang and Zhao (2016) and Francq and Zaköıan (2016)

argue that it is desirable in risk management to be able to draw simultaneous inference on VaR at

multiple risk levels. Theorem 2 below shows that in our (unconditional) extreme value context this is

particularly easy. Heuristically, if the assumptions of Theorem 1 are met for some sequence pn → 0,

then this also holds for the sequence pn(t) := pnt for t ∈
[
t, t
]

(0 < t < t < ∞), which suggests that

x̂pn(t) := X(kn+1)[k/(npn(t))]γ̂ and x̂pn should behave very similarly. Note that x̂pn = x̂pn(1).

Theorem 2. Under the conditions of Theorem 1 we have that, for 0 < t < t <∞,

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)
log

(
x̂pn(t)

xpn(t)

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|,

where Z ∼ N (0, 1), dn(t) = kn/(npn(t)) and xpn(t) = F←(1− pn(t)).

The uniform convergence in t ∈ [t, t] of Theorem 2 suggests the following (1−β)-confidence corridor

for VaR with levels between pn(t) and pn(t):

x̂pn(t) exp

{
−Φ

(
1− β

2

)
log(dn(t))√

kn

}
≤ xpn(t) ≤ x̂pn(t) exp

{
Φ

(
1− β

2

)
log(dn(t))√

kn

}
. (16)
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It is surprising that the width of the confidence corridor for xpn(t) does not depend on the values of t

and t. Indeed, the confidence corridor is simply obtained by calculating pointwise confidence intervals

for x̂pn(t). This can be explained by the Pareto-approximation that pins down the tail behavior very

precisely by extrapolation. Clearly, in finite samples one may not choose t too large, because then the

quality of the Pareto-approximation will suffer, rendering confidence corridors (16) imprecise. Also, in

actual applications one may not choose t too small, as this would push the boundaries of extrapolation

too far. So in practice a judicious choice of t and t (and pn) is required. In an application in Section 4,

some guidance on this issue is given. A similar, yet non-uniform, version of Theorem 2 is given under

a more restrictive β-mixing condition by Drees (2003, Thm. 2.2).

Remark 8. Gomes and Pestana (2007, Sec. 3.4) find in simulations that the finite-sample distribution

of log
(
x̂pn/xpn

)
is in better agreement with the asymptotic distribution than (x̂pn/xpn−1). This may

be due to log(x̂pn) = γ̂ log(dn) + log(X(kn+1)) being a linear function of γ̂, upon which the asymptotic

results rest; see the proof of Theorem 1.

Remark 9. A close inspection of the proofs of Theorems 1 and 2 reveals that the methodology of

this section may also be applied to conditional tail moments. For instance, for our ES estimator we

obtain

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)
log

(
ĈTM1(pn(t))

CTM1(pn(t))

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|,

where Z ∼ N (0, 1). A confidence corridor can then be constructed similarly as in (16).

3 Simulations

This section compares the MAD of our ES estimator ĈTM1(pn) with several competitors. Specifically,

we investigate the optimally bias-corrected estimator ÊS
(2)

pn of Hill (2015a), the untrimmed ÊSpn , the

estimator ĈTM
Pick

1 (pn) based on the Pickands (1975) estimator

γ̂Pick = γ̂Pickkn =
1

log 2
log

(
X(bkn/4c) −X(bkn/2c)

X(bkn/2c) −X(kn)

)
instead of the Hill (1975) estimator, and classical peaks over threshold (POT) estimation. In short,

POT fits a Generalized Pareto distribution to the excesses above some high threshold. The fitted

distribution is then used to calculate ES. For more detail, we refer to McNeil and Frey (2000, Sec. 4.1).

We also compare the MAD with the kernel-smoothed estimator ẼSp of Scaillet (2004). However, its

performance is hardly distinguishable from ÊSpn , so that the results are omitted. This is in agreement

with Chen (2008). All results in the following are based on 10,000 replications.
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CTM1(pn) ÊSp and ẼSp ÊS
(2)

p POT

Extrapolation Yes No No Yes

Sim. inf. Yes No No No

Serial dep. L2-E-NED geom. α-mixing geom. α-mixing i.i.d.

Distr. tail γ ∈ (0, 1) No γ ∈ (1/2, 1) γ ∈ (0, 1/2) γ ∈ [1/2, 1) γ ∈ (0, 1)

Conv. rate
√
kn/ log dn

√
n n1−γ

√
n

√
n/L(n)

√
kn

r-th moment r = 1 r > 2 r = 1 r = 2 r = 1 r = 1

Table 1: Conditions on serial dependence, the distributional tail, and existing moments E |X1|r <
∞ under which different ES estimators have a non-degenerate distribution with stated convergence
rate. The rows ‘Extrapolation’ and ‘Sim. inf’ indicate whether extrapolation beyond the range of the
data and simultaneous inference for different levels is possible for the respective estimator. In row
‘Distr. tail’, γ ∈ (a, b) indicates that F (x) = x−1/γL(x) must hold for some γ ∈ (a, b). In row ‘Conv.
rate’, L(·) denotes a slowly varying function.

An overview of the ES estimators under consideration is given in Table 1, which includes sufficient

conditions for a non-degenerate limit of these estimators. For CTM1(pn), the results are due to

Theorems 1 and 2 in this paper. In case no distributional assumption is imposed, Chen (2008) proves

the asymptotic normality of ÊSp and ẼSp. Linton and Xiao (2013) derive the asymptotic limits of these

two estimators, if F (x) = x−1/γL(x) is imposed for γ ∈ (1/2, 1). For ÊS
(2)

p , the corresponding reference

is Hill (2015c). Finally, for POT we refer to Smith (1987, Thm. 3.2). Note that once extrapolation

is required for dependent data, CTM1(pn) is the only estimator with a known asymptotic limiting

distribution.

In applying POT, we follow Mancini and Trojani (2011), Chavez-Demoulin et al. (2014) and others

by choosing the 90%-quantile as a threshold. The estimators ĈTM1(pn), ĈTM
Pick

1 (pn) and ÊS
(2)

pn

depend on a sequence kn that is only specified asymptotically. Hence, some guidance for the choice

of kn in finite samples is required. For ÊS
(∗)
pn in ÊS

(2)

pn = ÊS
(∗)
pn + R̂(2)

n , Hill (2015a, Sec. 3) proposes

to choose the trimming sequence kn = min
{

1, b0.25 · n2/3/(log n)2·10
−10c

}
as a fixed function of n.

However, for the bias correction term R̂(2)
n , which is a function of the Hill (1975) estimator, he uses

a data-dependent choice of the intermediate sequence kn. We follow Hill’s (2015a) recipe in the

simulations for ÊS
(2)

pn .

For the choice of k = kn in ĈTM1(pn) we again take a different tack and modify a data-adaptive

algorithm recently proposed by Dańıelsson et al. (2016). Their method is based on the following

considerations. Replacing pn by j/n in (9), the Pareto-type tail suggests – similarly as before – the

following estimate of the (1 − j/n)-quantile: x̂j/n(k) = (k/j)γ̂kX(k+1). The quality of the Pareto-

approximation for this particular choice of k may now be judged by supj=1,...,kmax
|X(j+1) − x̂j/n(k)|,
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i.e., a comparison of empirical quantiles and quantiles estimated using the Pareto-approximation.

Here, kmax indicates the range over which the fit is assessed. These considerations motivate the choice

k∗VaR = arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣X(j+1) − x̂j/n(k)
∣∣∣] , (17)

where kmin is the smallest choice of k one is willing to entertain (see also below). While the choice

k∗VaR is well-suited conceptually for quantile estimation and ĈTM1(pn) is essentially a scaled quantile

estimate, it may occasionally happen that γ̂k∗VaR
≥ 1, rendering ES estimates ĈTM1(pn) to be of

different sign than quantile estimates.

To avoid such a nonsensical result, we adapt the general idea behind the choice of k∗VaR to our

particular task of ES estimation. Instead of assessing the fit of the Pareto-motivated quantile estimates

to (non-parametric) empirical quantiles, we now assess the fit of Pareto-motivated ES estimates,

ĈTM1(j/n) = x̂j/n(k)/(1 − γ̂k), to the non-parametric estimates ÊSj/n from (1). Then, by analogy,

we choose

k∗ES = arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣ÊSj/n − ĈTM1(j/n)
∣∣∣] . (18)

With this particular choice, an estimate γ̂k∗ES
≥ 1 was always avoided in our simulations. Since the

largest level we use is pn = 0.05, the requirement npn/kn = o(1) from (13) suggests kmin = bpn · nc =

b0.05 · nc. Furthermore, we use kmax =
⌊
n0.9

⌋
. We apply the above method for ĈTM

Pick

1 (pn) as well,

where ĈTM1(pn) is replaced with ĈTM
Pick

1 (pn) in (18). Following Hill (2010), we use the bandwidth

γn = (k∗ES)0.25 for σ̂2kn .

We carry out the comparison for a range of i.i.d. and dependent data. For independent data we

use three classes of distributions. First, the Burr distribution, Burr(β, λ, τ), with survivor function

F (x) =

(
β

β + xτ

)λ
, x > 0, τ > 0, β > 0, λ > 0.

This is a popular class of distributions in insurance, because it offers more flexibility than the Pareto

Type II distribution (e.g., Burnecki et al., 2011). Its tail index is given by α = τλ and the slowly

varying function A(·) in Assumption 1 can be chosen as a constant multiple of x−τ . Hence, the larger

τ > 0, the faster the convergence to true Pareto behavior in (7). In insurance applications one often

finds for the tail index that α ∈ (1, 2) (see, e.g., Resnick, 2007), which motivates our choices of τ = 1.5

and λ = 1, and τ = 6 and λ = 0.25, both resulting in α = 1.5. For the latter choice where τ is

larger (and hence the Pareto approximation more accurate), we expect improved performance of our

estimator relative to ÊSpn and ÊS
(2)

pn , where the latter only partially takes into account the Pareto-type

tail for bias correction. Note that since α = 1.5 < 2, the considered Burr distributions possess infinite
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variance.

As a second class, we use the Pareto Type I distribution, Pa(α), with survivor function F (x) = x−α,

x ≥ 1. For this distribution, the Pareto-type tail assumption (4) even holds without the limit. We

use Pa(3) and Pa(1.5), where the latter distribution – unlike the former – does not possess a finite

variance, since the tail index is α = 1.5 < 2.

Finally, we use Student t(ν)-distributed data, with ν = 10 and ν = ∞, corresponding to the

standard normal distribution. We use these two light-tailed distributions (with tail index α = ν > 2)

to assess the performance of our estimator in sufficiently challenging cases. Note that the Pareto-type

tail assumption (4) is not satisfied for t(∞). For all the i.i.d. data, we calculate the true ES from

CTM1(p) = (1/p)
∫ 1
1−p VaRα dα, where VaRα can simply be obtained from the quantile function of

the distributions.

As models for dependent data, we use the following:

GARCH: ξi = σiεi, where σ2i = 10−6 + 0.3X2
i + 0.6σ2i−1, εi

i.i.d.∼ (0, 1)

AR–GARCH: Xi = 0.7Xi−1 + ξi, with ξi as in GARCH,

AR: Xi = 0.7Xi−1 + εi, with i.i.d. εi.

Depending on whether the innovations εi in these models are standard normally- or t(ν)-distributed,

the corresponding models will be termed GARCH-N(0,1), GARCH-t(2.5), AR–GARCH-N(0,1), AR–

GARCH-t(2.5), AR-N(0,1) and AR-t(10). Of course, for the GARCH and AR–GARCH models the

t(ν)-distributed innovations have to be standardized to have zero mean and unit variance.

While the stationary distribution of AR-N(0,1) is again normal with exponentially decaying tail,

the stationary distributions of the models AR-t(10), GARCH-N(0,1) and GARCH-t(2.5) are known

to have regularly varying tails in the sense of (4); see Fasen et al. (2010). The AR-t(10) inherits its

tail index α = 10 from the innovations. The tail index of the two GARCH models is determined by

the unique positive solution α > 0 of

E
[
0.3 · ε21 + 0.6

]α/2
= 1.

For the GARCH-N(0,1) (GARCH-t(2.5)) model, this solution is α = 4.09 (α = 2.18). To the best

of our knowledge, no results on the regular variation of AR(1)–GARCH(1, 1) processes exist. Yet, as

both AR(1)–ARCH(1) and GARCH(1, 1) processes have regularly varying tails (see Fasen et al., 2010,

and the references therein), the same property is likely to hold for AR(1)–GARCH(1, 1) models as

well. We remark that verifying the second-order Assumption 1 is notoriously difficult for time series

models, so it is frequently treated as a given (Sun and Zhou, 2014; Hill, 2015c).
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For the dependent data, the true ESp = E[X | X > VaRp] is computed by simulating trajecto-

ries X1, . . . , XN of length N = 100, 000 and computing 1
pN

∑N
i=1XiI{Xi≥X(bpNc)}, as in (1). This is

repeated B = 10, 000 times and the average over all estimates is taken as the true value (Hill, 2015a,

p. 17).

The ratios of the MAD of the estimators ÊSpn , ÊS
(2)

pn , POT, and ĈTM
Pick

1 (pn) over the MAD

of ĈTM1(pn) are displayed in Figure 1 (for independent data) and Figure 2 (for dependent data).

Note that in both figures the y-axis limits across rows are different to zoom in on the relevant parts

of the respective plots. We consider pn = 0.001, 0.002, . . . 0.05 and length n = 2000. The following

conclusions can be drawn from Figure 1:

1. From (a) and (b) we conclude the following. As mentioned above, the Burr(1, 0.25, 6) distribution

more closely resembles a Pareto Type I distribution than the Burr(1, 1, 1.5), since τ = 6 is larger

in the former case. Thus, the better the underlying distribution fits a true Pareto tail shape,

the larger the relative advantage of ĈTM1(pn) – which exploits the Pareto shape – in terms of

MAD.

2. From (c) and (d) we see that, while theoretically ES estimation is made more difficult for

ĈTM1(pn) the heavier the tail (Remark 6), for the other estimators it becomes comparatively

more difficult, because MAD ratios are much higher for the heavier tailed Pa(1.5) distribution.

Also, we find that the performance of ĈTM1(pn) improves even more vis-à-vis the non-parametric

ÊSpn , the more extreme the quantile level considered. This is to be expected, because ĈTM1(pn)

focuses on small levels by construction.

Note that the estimator ÊS
(2)

pn appears to behave erratically. For Pa(1.5) it works better than

ÊSpn , yet for Pa(3) it is less precise, particularly for extreme quantiles.

3. The light-tailed distributions in (e) and (f) present challenging cases for our estimation method

and indeed all methods relying on the Pareto-type tail assumption in (4), i.e., ÊS
(2)

pn , ĈTM1(pn)

and ĈTM
Pick

1 (pn). The best estimators in both cases are the simple non-parametric ÊSpn and

POT, which also works for non-fat tailed distributions (Embrechts et al., 1997, Sec. 6.5; McNeil

and Frey, 2000). However, the comparative advantage becomes smaller for the t(10)-distribution,

i.e., the heavier the tail. This is as expected, since for the t(ν)-distribution (with γ = 1/ν) ÊSpn

has a faster convergence rate than ĈTM1(pn) for γ < 3/4, and here we consider γ = 0 in (e)

and γ = 1/10 in (f) (cf. Remark 6).

The results for the time series models in Figure 2 lend further evidence to the above conclusions 2

and 3. For instance, comparing panels (a) (where α = 4.09) and (b) (where α = 2.18) we find an
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(b) Burr(1, 0.25, 6)
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(c) Pa(3)
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(d) Pa(1.5)
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(e) N(0,1)
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Figure 1: Ratio of MADs for different estimators over MAD for ĈTM1(pn) for i.i.d. data: the non-

parametric estimator ÊSpn (solid), Hill’s (2015a) estimator ÊS
(2)

pn (dashed), POT-based estimator

(dot-dashed), ĈTM
Pick

1 (pn) based on Pickands’s (1975) estimator (long-dashed).
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(a) GARCH−N(0,1)
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(b) GARCH−t(2.5)
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(c) AR−GARCH−N(0,1)
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(d) AR−GARCH−t(2.5)
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(e) AR−N(0,1)

0.01 0.02 0.03 0.04 0.05

0.
2

1.
0

5.
0

20
.0

non−par.
Hill
POT
Pickands

pn

M
A

D
 r

at
io

(f) AR−t(10)

Figure 2: Ratio of MADs for different estimators over MAD for ĈTM1(pn) for dependent data: the

non-parametric estimator ÊSpn (solid), Hill’s (2015a) estimator ÊS
(2)

pn (dashed), POT-based estimator

(dot-dashed), ĈTM
Pick

1 (pn) based on Pickands’s (1975) estimator (long-dashed).
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improved performance of ĈTM1(pn) for the heavier tailed model and the improvements are more

marked the more extreme the quantile level considered. E.g., the non-parametric estimator ÊSpn has

up to 10% higher MAD in (a) and up to 25% higher MAD in (b). Regarding the third conclusion,

we again find our estimator outperformed by ÊSp and POT for the models where the stationary

distribution is either light-tailed (i.e., does not possess a Pareto-type tail) or hardly distinguishable

from a light-tailed distribution (Figure 2 (e) & (f)). It is interesting to note that POT performs quite

well in (e) and (f) despite being valid only for independent data. We remark that the first conclusion

is hard to verify because, as mentioned above, the second-order behavior in Assumption 1 is largely

unexplored for time series models.

Comparing only ÊSpn and ĈTM1(pn) in Figures 1 and 2, we find that each estimator offers a

different robustness-efficiency trade-off. The estimates ÊSpn are clearly more robust, while – at least

for dependent data – the loss in efficiency seems mild. Having said that, ĈTM1(pn) is more efficient

uniformly across pn when the tails are rather heavy, as is frequently the case for financial data.

Figures 1 and 2 suggest that particularly for small levels pn ≤ 0.01 the relative performance of

ĈTM1(pn) is very good. Hence, we investigate coverage of our confidence corridors for pn = 0.01 and

t ∈ [0.1, 1], such that all upper quantiles in the range between 0.1% and 1% are covered. Following

the suggestion of Dańıelsson et al. (2016) for the choice of kn in (17) (and using a bandwidth of

γn = (k∗VaR)0.25), we have calculated coverage probabilities of the 90%-confidence corridor for xpn(t)

in (16) for the i.i.d. data. Table 2 displays the results. For the heavy-tailed models with Pareto-type

tail, we find the uniform coverage to be quite convincing. Unsurprisingly, once the Pareto assumption

is no longer satisfied – as for the N(0,1)-distribution – or the tails are very light – as for the t(10)-

distribution –, the extrapolation to the very small levels of 0.1% is no longer accurate and coverage

breaks down.

Finally, we investigate for each distribution how much coverage changes, when only considering

the least extreme 99%-quantile xpn=0.01, i.e., when considering pointwise instead of uniform coverage.

Burr(1, 1, 1.5) Burr(1, 0.25, 6) Pa(3) Pa(1.5) N(0,1) t(10)

Coverage xpn(t) 85.7 90.9 91.3 90.4 0 7.3

Coverage xpn 89.1 92.4 92.3 92.3 97.6 96.3

k∗VaR 216 310 315 318 107 107

k∗ES 194 310 321 330 105 107

Table 2: Coverage (in %) of true xpn(t) and xpn for pn = 0.01 and t ∈ [0.1, 1]. Nominal level set to
90%. Value of k∗VaR is the average value of (17) used in the estimation of xpn(t) and xpn . Value of k∗ES
is the average value of (18).
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Again, Table 2 shows the empirical coverage probabilities. Interestingly, for the distributions where

uniform coverage was accurate, the pointwise coverage is not markedly different. This suggests that

much of the estimation uncertainty lies in estimating the least extreme quantile (x0.01 in this case)

and the extrapolation to smaller levels does not significantly affect coverage. We thus conclude that

the Pareto tail pins down the actual tail behavior very well for these models. For the remaining two

models, the results change dramatically. Since now extrapolation is only required for the least extreme

quantile, we find coverage to be much improved, although somewhat too high.

We also present the average values of k∗VaR used in the estimation of the quantiles in Table 2.

Additionally, average values of k∗ES are also shown. These value were used to compute CTM1(pn)

in Figure 1. Both choices show qualitatively similar behavior. Roughly, the closer the tails are

to true Pareto behavior, the more upper order statistics are used for estimation. For instance, for

the Burr(1, 0.25, 6)-distribution we use k∗ES = 310 on average, while we only use k∗ES = 194 for

Burr(1, 1, 1.5).

Overall, we conclude that – where appropriate – our ES estimator CTM1(pn) can improve estima-

tion precision vis-à-vis other commonly used semi-parametric and non-parametric estimators. These

relative improvements tend to be larger, the better the Pareto-approximation, and/or the more ex-

treme the quantile to be estimated, and/or the heavier the tail of the data. In these cases, our uniform

confidence intervals also appear to work well. If the Pareto-approximation is not satisfied or the tails

are very light, neither ĈTM1(pn) nor the uniform confidence intervals work well. This highlights the

importance of empirically checking the Pareto-type tail assumption (4), as is done in the following

Section 4.

We have only included semi- and non-parametric estimators of ES in our simulations. In case belief

in a parametric model is strong, parametric estimators of ES may offer a good robustness-efficiency

trade-off. For instance, in the above GARCH-N(0,1) model, one may estimate ES from a sample

ξ1, . . . , ξn by fitting a GARCH-N(0,1) model in the first step (using Gaussian maximum likelihood),

and in a second step calculate ES implied by the fitted model. To carry out the second step, one

may simply adopt a ‘brute-force’ approach, similarly as for the calculation of the true values of ES.

Due to computational constraints, we choose to simulate B = 1, 000 trajectories of length N = 2, 000.

Proceeding in this way, we find MAD ratios for the parametric estimator to be 0.66 for pn = 0.001 and

0.78 for pn = 0.05; cf. Figure 2 (a). We refer to Kang and Babbs (2012) for an empirical application

of the brute-force method.

There may be at least two drawbacks to the brute-force approach. First, it may be computationally

prohibitive in large scale applications, where often quick and accurate estimates of tail risk for a large
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number of assets are sought. This may be the case when having to set margin or capital requirements

for a very large number of assets or client portfolios. For instance, calculating the true value of ES

for a (true or fitted) GARCH-N(0,1) model based on B = 10, 000 trajectories of length N = 100, 000,

takes about one hour on a standard desktop computer. The computational burden can increase

even further if a bootstrap procedure is required to obtain a measure of estimation uncertainty. The

computational cost of our proposed method, which includes a measure of estimation uncertainty, is

negligible in contrast.

Second, the approach of relying on a parametric model can be dangerous in our extreme value

setting. Drees (2008) has shown in simulations for extreme VaR estimation that even a slight mis-

specification of the model, that is not detectable by statistical tests, can lead to distorted estimates.

Thus, even if there is strong evidence for a certain parametric model, parametric estimates of extreme

ES (or indeed any other extreme risk measure) should be supplemented by semi-parametric extreme

value estimates in our view.

4 An application to extreme returns of VW shares

In this section we illustrate the use of Theorems 1 and 2 by calculating ES estimates and VaR corridors.

We do so for the n = 3474 log-losses of the German auto maker VW’s ordinary shares from March

27, 1995 to October 24, 2008 downloaded from finance.yahoo.com. (If Pi denotes the adjusted closing

prices, the log-losses are defined as Xi = − log(Pi/Pi−1). A similar analysis could of course be carried

out for the log-returns −Xi.) This period was chosen to precede the tumultuous week of trading in

VW shares from October 27, 2008 to October 31, 2008. Preceding this week, the sports car maker

Porsche built up a huge position in VW shares in a takeover attempt that ultimately failed. Porsche

announced on Sunday – October 26, 2008 – that it had indirect control of 74.1% of VW. Since the

German state of Lower Saxony owned another 20.2% of VW, this left short-sellers scrambling to buy

the remaining shares to close their positions. The shares closed at e 210.85 on Friday, October 24,

more than doubling on the next trading day – Monday, October 27 – to e 520, and again almost

doubling to e 945 on Tuesday. During a few minutes of trading on Tuesday, VW was the world’s most

valuable company by market capitalization. Wednesday then saw the shares almost halve in value,

closing at e 517.

The magnitude of the log-returns from Monday, Tuesday and Wednesday of 0.904, 0.597 and

−0.603, respectively, is very large indeed if compared with previous historical returns, which are

displayed in Figure 3. In fact, a log-loss of 0.603 has not been observed before. Thus, one must assess

the magnitude of a previously unseen event, which provides a natural application of the extreme value
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methods proposed in this paper. Since our estimator ĈTM1(pn) is – to the best of our knowledge –

the only one known to be asymptotically normal under serial dependence (which is obviously present

in the VW log-returns), while also allowing for extrapolation, it is natural to consider it as it is the

only theoretically sound choice; cf. Table 1.

1996 1998 2000 2002 2004 2006 2008

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Date

V
W

 lo
g−

re
tu

rn
s

Figure 3: VW log-returns from March 27, 1995 to October 24, 2008

To get a better sense of the significance of the log-loss of 0.603 we apply the methodology developed

in this paper. Before doing so, we check that Theorems 1 and 2 may reasonably be applied. To this

end, we fit a standard AR(1)–GARCH(1, 1) model with skewed-t distributed innovations to the time

series. Visual inspection and standard Ljung-Box tests of the (raw and squared) standardized residuals

reveal that they may reasonably be considered i.i.d. and thus an adequate fit of our model. Under quite

general conditions, AR(1)–GARCH(1, 1) models are stationary and L2-E-NED (Hill, 2011, Sec. 4).

To the best of our knowledge, the Pareto-type tail assumption (4) has only been verified for the

smaller class of AR(1)–ARCH(1) models by Borkovec and Klüppelberg (2001), so it seems worthwhile

to check it empirically. To do so, we use the Pareto quantile plot of Beirlant et al. (1996). The idea is

to use (6), i.e., U(x) = xγLU (x). Since logLU (x)/ log x → 0 as x → ∞ (de Haan and Ferreira, 2006,

Prop. B.1.9.1), we obtain logU(x) ∼ γ log x. Thus, for small j, the plot of(
− log

(
j

n+ 1

)
, logX(j) ≈ logU((n+ 1)/j))

)
, j = 1, . . . , n,
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should be roughly linear with positive slope γ > 0, if (6) holds with positive extreme value index.

Since some log-losses are negative, rendering logX(j) to be undefined, we only use the positive log-

losses for the Pareto quantile plot in panel (a) in Figure 4. A roughly linear behavior with positive

slope can be discerned from − log(j/(n+ 1)) = 2 onwards, but it is not quite satisfactory, as the Hill

plot of kn 7→ γ̂kn in panel (b) is highly unstable. A better approximation to linearity in the Pareto

quantile plot and more stable Hill estimates can often be obtained by a slight shift of the data. Here,

a positive shift of 0.05 sufficed, as the plots in (c) and (d) for the shifted data reveal. The positive

slope of the roughly linear portion in the Pareto quantile plot and the strictly positive and very stable

Hill estimates for kn up to 1000 strongly suggest a Pareto-type tail with positive tail index for the VW

log-losses. From the stable portion of the Hill plot in panel (d) we read off an estimate of the extreme

value index of γ̂ = 0.2. The 95%-confidence intervals for γ for different values of kn are indicated

by the shaded area in panel (d). They were computed using Thm. 2 of Hill (2010) and σ̂kn ; see also

Equation (A.1) in the Appendix. The null hypothesis γ = 1, which would invalidate our analysis for

ES, is clearly rejected for all kn. Since there is strong evidence for γ < 0.5, we also conclude that the

log-losses possess a finite variance. All in all, we are confident that Theorems 1 and 2 can be applied.
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Figure 4: Pareto quantile plot and Hill plot for raw log-losses (in (a) and (b)) and for log-losses
shifted by 0.05 (in (c) and (d)). The shaded area around the Hill estimates in panel (d) signifies
95%-confidence intervals.
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Figure 5 displays the results, i.e., the VaR and ES estimates for levels between pn = 0.05 and 0.0001.

In view of the much more stable Hill estimates (upon which our VaR and ES estimators are based)

for the shifted data in Figure 4, we carry out VaR and ES calculations for the shifted data and then

subtract 0.05 from the results to arrive at estimates for the original series of log-losses. To compute

VaR and ES estimates we use k∗VaR = 365 and k∗ES = 902 respectively, which have been calculated with

kmin and kmax chosen as in the simulations. Incidentally, from the Hill plot in panel (d) of Figure 4

the use of kn around a similar value of around 1000 seems sensible, because smaller values of kn lead

to roughly the same estimate (yet a slower convergence rate of γ̂) and for larger values the Hill plot is

slightly upward trending, suggesting a possible bias. The choice of pn = 0.05 is compatible with the

theory requirement npn = o(kn), since npn = 3474 · 0.05 = 173.7 is small relative to kn = k∗VaR = 365

and kn = k∗ES = 902.

In more detail, Figure 5 displays VaR estimates x̂pn (solid) and ES estimates ĈTM1(pn) (dotted),

ĈTM
Pick

1 (pn) (dotted) and POT (dot-dashed). As is customary in extreme value theory, the risk

level pn is not plotted directly, but rather the m-year return level; see, e.g., Coles (2001, Sec. 4.4.2).

Since there are approximately 250 trading days in a year, a probability of pn = 1/250 corresponds

to a return period of 1 year. Thus, the return level with return period of 1 year is, on average, only

exceeded once a year. Similarly, the 2-year return period corresponds to pn = 1/500, and so forth. As

is also customary, we plot the return period on a log-scale to zoom in on the very large return periods

that are of particular interest in risk management. The estimated and empirical quantiles (calculated

simply as X(bnpnc+1)) are in reasonable agreement, strengthening further the belief that our methods

are appropriate.

We have also estimated VaR via the brute-force method described in Section 3 (with B = 10, 000

and N = 100, 000). However, beyond return periods of one year, the brute-force VaR estimates lie

above even the ES estimates of the other methods. Thus, there is no agreement in the tails between

the empirical quantiles and those obtained by brute-force, suggesting that this method is not adequate

here. This empirical result is in line with the above mentioned simulations by Drees (2008), where

a slight mis-specification of the model is magnified in the tails. The discrepancy between the VaR

estimates reflects the fact that, while the AR(1)–GARCH(1,1) models the volatility dynamics quite

well, it does not model extreme quantiles well. Due to this, we do not consider the brute-force approach

further in this section.

Most empirical estimates lie within the 95%-confidence corridor for VaR at different levels (grey

area in Figure 5) calculated from Theorem 2. It has the interpretation that the null hypothesis that

the true xpn(t) lies in this gray area (for t = [0.002, 1] and pn = 0.05) cannot be rejected at the
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5% level. In this sense, it provides an informative description of the tail region.
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Figure 5: Return level plot for VW log-losses (solid line). Grey area indicates 95%-confidence corridor

for return levels. ES estimates shown as the dotted (ĈTM1(pn)), dashed (ĈTM
Pick

1 (pn)) and dot-
dashed (POT) line.

The dotted line in Figure 5 indicates ES estimates based on ĈTM1(pn). As the expected loss given

a VaR exceedance, the ES estimates provide further insight on tail risk. Since we applied a shift to the

data, which affects the Hill (1975) estimator (upon which ĈTM1(pn) is based), Figure 5 also includes

additional ES estimates as a robustness check. The estimates ĈTM
Pick

1 (pn) (dashed line), based on

the shift-invariant Pickands (1975) estimator, do not differ significantly from ĈTM1(pn). The same

holds for the – also shift-invariant – POT estimates (dot-dashed line), even though POT can only

validly be applied for independent data.

All in all, nothing in Figure 5 suggests that a log-loss of 0.603 was to be expected. Even ES esti-

mates for a return period of 40 years do not come close to this value. Of course, further extrapolation

of VaR and ES estimates in Figure 5 would be possible to see for which return period a return level of

0.603 is obtained. However, in view of the restriction on pn imposed by (13) (see also Remark 2) and

related applications of extreme value theory (Drees, 2003), we feel that extrapolation well beyond a

level of pn = 0.0001 ≈ 1/(2.87 · n) is no longer justified.

The above analysis has revealed that the log-loss of 0.603 on October 29, 2008 was quite an

unexpected event based on estimates of the d.f. F (·) of the losses. However, conditionally on the

extraordinary returns of 0.904 and 0.597 prior to October 29, 2008, such a log-loss may be much more

likely due to the well-known persistence of volatility. To frame the problem more formally, we define
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the conditional d.f. of the log-losses given the past history as

Fn(x) := P {Xn+1 ≤ x |Xn, Xn−1, . . .} .

Now with regard to this conditional d.f. a log-loss of 0.603 may have been more likely. We assess this

in the remainder of this section.

A natural candidate for a model of Fn(·) is the (zero-mean) AR(1)–GARCH(1,1) model previously

found to provide a good description of the volatility dynamics. Under this model, the (right-tail)

conditional VaR, CVaRp,n, and conditional ES, CESp,n, can be written as (see, e.g., McNeil and Frey,

2000)

CVaRp,n := F←n (1− p) = φ1Xn + σn VaRU
p , (19)

CESp,n := E
[
Xn+1

∣∣ Xn+1 > CVaRp, Xn, Xn−1, . . .
]

= φ1Xn + σn ESUp , (20)

where VaRU
p := F←U (1− p), ESUp := E[U | U > VaRU

p ] with FU (·) denoting the d.f. of the innovations

Ui, cf. Equations (11) and (12). The implication is that CVaRp,n and CESp,n can be estimated in a

two-step procedure. First, we fit the model via QMLE to extract φ̂1, σ̂n and the residuals Û1, . . . , Ûn.

In a second step, estimates of VaRU
p and ESUp based on the residuals are obtained using the estimators

presented in this paper. Denote these by V̂aR
U

p and ÊS
U

p , respectively. Thus, to estimate (19) and

(20) we use

ĈVaRp,n = φ̂1Xn + σ̂nV̂aR
U

p and ĈESp,n = φ̂1Xn + σ̂nÊS
U

p . (21)

Since we now take into account the two additional extreme returns, we present estimates ĈVaRp,n+2

and ĈESp,n+2 in Figure 6. Note that there was no need to include these two positive returns in our

unconditional analysis, because our estimators only exploit the form of the left-tail of the returns.

In the conditional analysis in contrast, the impact of the extreme positive gains on estimates of the

conditional loss – through the volatility σ2n = ω+α1(Xn−1−φ1Xn−2)
2 +β1σ

2
n−1 – can be substantial;

cf. (19) and (20). Note that to estimate VaRU
p and ESUp in the second step of the two-step procedure,

we have again applied a shift (by 1.5 to the right) to the data for more stable Hill (1975) estimates. The

Hill plot for the residuals (which is omitted for brevity) indicates an extreme value index γ slightly

below 0.2. This provides evidence for finite fourth moments of the innovations, which is required

for asymptotically normal QMLE. Unlike in the unconditional analysis, the optimal choices for the

number of upper order statistics are now in complete agreement with k∗VaR = k∗ES = 204.

Figure 6 demonstrates that – conditionally on the state of the market – a log-loss of 0.603 was

not even a particularly extreme event. The least extreme estimates of CVaRp,n+2 (solid line) and
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CESp,n+2 (dotted line) shown in Figure 6 are for level p = 5%, and even these are well above 0.603. In

fact, using completely non-parametric estimates of VaRU
p and ESUp in the two-step procedure reveals

that a log-loss of 0.603 roughly corresponds to CVaRp,n+2 at level p = 9%. Thus, we conclude that if

current volatility levels are taken into account, a log-loss of the observed magnitude could have been

expected and consequently planned for. Of course, given the unstable state of the market, it is highly

questionable if one could have found a counterparty willing to hedge the risk.

Similarly as in the unconditional analysis, the result of the conditional analysis is corroborated

by employing additional shift-invariant estimators for ÊS
U

p in (21). Using a POT-based estimator

again yields similar results. The estimates based on the Pickands (1975) estimator are all lower.

However, these may be considered unreliable, as for longer return periods the CES estimates are

sometimes barely above the non-parametrically estimated CVaR values, which should be a natural

lower bound for the corresponding CES values. Based on the close agreement between POT estimates

and ĈTM1(pn), our results appear robust.

5 Summary

Our first main contribution is to derive central limit theory for a wide range of popular risk measures –

including VaR and ES – in time series. As in Linton and Xiao (2013) and Hill (2015a), we do so under
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Figure 6: Plot of ĈVaRp,n+2 for VW log-losses (solid line). Grey area indicates 95%-confidence corri-
dor, which are calculated ignoring the parameter estimation uncertainty of the AR(1)–GARCH(1,1)

parameters. Estimates of CESp,n+2 shown as the dotted (ÊS
U

p = ĈTM1(pn)), dashed (ÊS
U

p =

ĈTM
Pick

1 (pn)) and dot-dashed (POT) line.
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a Pareto-type tail assumption. Yet, we exploit the Pareto approximation to motivate an estimator

of (among other risk measures) ES, whereas Linton and Xiao (2013) consider a non-parametric ES

estimator and Hill (2015a) only uses the Pareto assumption for bias correction of his tail-trimmed

ES estimator. Asymptotic theory is derived under an E-NED property, which is significantly more

general than the geometrically α-mixing assumption of Linton and Xiao (2013) and Hill (2015a). It

is shown in simulations that our estimator (which fully takes into account the regularly varying tail)

often provides better estimates in terms of MAD than a wide range of competitors. Our second main

contribution is to derive uniform confidence corridors for VaR and also the other risk measures covered

by our analysis. Furthermore, we propose a method for choosing the sample fraction kn used in the

estimation of ES, which is used in the simulations. Finally, we illustrate our procedure with VW

log-losses prior to the takeover attempt by Porsche. We find that the huge losses in the aftermath of

this failed bid were statistically very unlikely. Yet, taking into account the extremely volatile state of

the market, these losses were to be expected.
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Csörgő S, Haeusler E, Mason D. 1991. The asymptotic distribution of extreme sums. The Annals of

Probability 19: 783–811.
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Appendix

Proof of Theorem 1: From Hill (2010, Thm. 2) we get
√
kn
σkn

(γ̂ − γ)
D−→

(n→∞)
N (0, 1), (A.1)

where σ2kn = E[
√
kn(γ̂ − γ)]2. Note that Hill’s (2010) Assumption B (required in his Thm. 2) can be

seen to be implied by Assumption 1. Concretely, write (7) in terms of the slowly varying function L(·)

from (5) to obtain

lim
x→∞

L(λx)
L(x) − 1

A(x)
=
λρ/γ − 1

γρ
,

where A(·) is a function with bounded increase due to A(·) ∈ RVρ/γ for ρ/γ < 0 (de Haan and Ferreira,

2006, Thm. B.3.1). Also note that lim infn→∞ σkn > 0 by arguments in Hill (2010, Sec. 3.2).

Hence, from (A.1) and arguments in the proof of Theorem 4.3.9 in de Haan and Ferreira (2006),

we get

1

σkn

√
kn

log dn

(
x̂pn
xpn
− 1

)
D−→

(n→∞)
N (0, 1). (A.2)

Here, we have also used that

√
kn

(
X(kn+1)

U(n/kn)
− 1

)
= OP (1)

from Hill (2010, Lem. 3) and the fact that log(x) ∼ x− 1, as x→ 1. Next we show that

√
kn

log dn

(
ĈTMa(pn)

CTMa(pn)
− 1

)
=

√
kn

log dn

(
x̂apn
xapn
− 1

)
+ oP (1). (A.3)
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To do so, expand

√
kn

log dn

(
ĈTMa(pn)

CTMa(pn)
− 1

)
=

√
kn

log dn

 x̂apn
xapn
· 1− aγ

1− aγ̂
·

xapn
1−aγ

CTMa(pn)
− 1

 . (A.4)

By (A.1),

1− aγ
1− aγ̂

= 1 +OP (1/
√
kn). (A.5)

From Pan et al. (2013, Thm. 4.2),

lim
n→∞

1

A
(
U(1/pn)

) (CTMa(pn)

xapn
− 1

1− aγ

)
=

a

(1/γ − a)(1/γ − a− ρ)
.

Due to npn = o(kn) from (13) and monotonicity of U(·), we have U(n/kn) = O
(
U(1/pn)

)
. Thus, with

Assumption 1,

A
(
U(1/pn)

)
= O

(
A
(
U(n/kn)

))
= o(1/

√
kn).

With the foregoing, this implies

CTMa(pn)
xapn
1−aγ

− 1 = o

(
1√
kn

)
. (A.6)

Combining (A.4)–(A.6), (A.3) follows.

In view of (A.3) and
∣∣∣σ̂2kn − σ2kn∣∣∣ = oP (1) (Hill, 2010, Thm. 3), it suffices to prove the claim of the

theorem for the sequence of random vectors

1

σkn

√
kn

log dn

( x̂ajpn
x
aj
pn

− 1

)
j=1,...,J

,

(
x̂pn
xpn
− 1

)′ .
Let b1, . . . , bJ+1 ∈ R. Then, using a Cramér-Wold device, it suffices to consider

1

σkn

√
kn

log dn

J+1∑
j=1

bj

(
x̂
aj
pn

x
aj
pn

− 1

)
.

(Recall aJ+1 = 1.) Invoking a Skorohod construction (e.g., de Haan and Ferreira, 2006, Thm. A.0.1)

similarly as in de Haan and Ferreira (2006, Example A.0.3), we may assume that the convergence in

(A.2) holds almost surely (a.s.) on a different probability space:

1

σkn

√
kn

log dn

(
x̂pn
xpn
− 1

)
a.s.−→

(n→∞)
Z ∼ N (0, 1).

(Note the slight abuse of notation here.) A Taylor expansion of the functions fj(x) = xaj around 1
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thus implies

1

σkn

√
kn

log dn

J+1∑
j=1

bj

(
x̂
aj
pn

x
aj
pn

− 1

)
a.s.−→

(n→∞)

J+1∑
j=1

bjajZ.

Going back to the original probability space, the conclusion follows. �

Proof of Theorem 2: Since log(1 + x) ∼ x as x→ 0, it suffices to show

sup
t∈[t,t]

∣∣∣∣∣∣ 1

σ̂kn

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)∣∣∣∣∣∣ D−→
(n→∞)

|Z|.

Due to x̂pn(t) = x̂pnt
−γ̂ and log dn(t)/ log dn = 1 + o(1) uniformly in t ∈ [t, t], we can expand

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)
= (1 + o(1))

√
kn

log dn

(
x̂pn
xpn

tγ−γ̂
xpn
xpn(t)

t−γ − 1

)
. (A.7)

Apply the mean value theorem with (∂/∂x)tx = tx log(t) to derive tγ−γ̂ = 1 + (γ − γ̂)tγ+ν(γ̂−γ) log(t)

for any t ∈ [t, t] for some ν = νt ∈ [0, 1]. Since γ̂ − γ = OP (1/
√
kn), this implies

tγ−γ̂ = 1 +OP (1/
√
kn) uniformly in t ∈ [t, t]. (A.8)

Writing (7) in terms of the quantile function U(·), we obtain from de Haan and Ferreira (2006,

Thm. 2.3.9) that, uniformly in t ∈ [t, t],∣∣∣∣∣xpn(t)

xpn
− t−γ

∣∣∣∣∣ =

∣∣∣∣∣U
(
1/(pnt)

)
U
(
1/pn

) − t−γ∣∣∣∣∣ = O
(
A(U(1/pn))

)
= O

(
A(U(n/kn))

)
= o(1/

√
kn). (A.9)

Combining (A.7)–(A.9) gives

√
kn

log dn(t)

(
x̂pn(t)

xpn(t)
− 1

)
=

√
kn

log dn

(
x̂pn
xpn
− 1

)
+ oP (1) uniformly in t ∈ [t, t].

The conclusion now follows from Theorem 1. �
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