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Abstract

In general location-scale models for asset returns, we develop central limit theory for tail risk fore-

casts. We do so for a wide range of risk measures, viz. distortion risk measures and expectiles. Two

popular members of the class of distortion risk measures are the Value-at-Risk and the Expected

Shortfall. The estimators we consider are motivated by a Pareto-type tail assumption and allow for

extrapolation beyond the range of available observations. Simulations reveal that the finite-sample

distributions are adequately approximated by the asymptotic distributions. An empirical appli-

cation demonstrates that in sufficiently large samples our estimators outperform non-parametric

alternatives when forecasting extreme risk.

Keywords: Central limit theory, Distortion risk measures, Expectiles, Extreme value theory,

Location-scale model

JEL classification: C14 (Semiparametric and Nonparametric Methods), C22 (Time-Series Mod-

els), C58 (Financial Econometrics)

1 Motivation

Forecasting risk is one of the main tasks in financial risk management. Risk forecasts are deeply

ingrained in the regulatory framework of the insurance industry (Solvency II) and the banking industry

(Basel II and III). They are also used heavily within financial institutions to, e.g., set trading limits

for traders (Jorion, 2006). As with other dynamic forecasts, there is estimation uncertainty in risk

forecasts. A number of authors have quantified this estimation uncertainty; e.g., Gao and Song

(2008), Linton and Xiao (2013), Francq and Zaköıan (2015) and Wang and Zhao (2016). However,

these authors exclusively focus on Value-at-Risk (VaR), i.e., the value that is only exceeded with some

small probability δ, and/or Expected Shortfall (ES), i.e., the average loss given a VaR exceedance.

Also, their estimators cannot be adapted to the estimation of extreme risks, that may lie outside the

range of observations.
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However, adopting estimators—motivated by extreme value theory (EVT)—that can do so has

been shown to be beneficial in many comparative studies of forecasting performance (e.g., McNeil

and Frey, 2000; Gençay and Selçuk, 2004; Chan and Gray, 2006; Kuester et al., 2006). To the best

of our knowledge, only Chan et al. (2007), Martins-Filho et al. (2018) and Hoga (2018+a) study the

estimation risk of estimators based on extreme value theory in a time series context.1 Chan et al.

(2007) and Hoga (2018+a) only derive their results for (ARMA–)GARCH models. A drawback of

Martins-Filho et al. (2018) is that they assume finite fourth moments of the innovation distribution.

This limits applicability in case of rather heavy-tails, where extreme value methods work particularly

well vis-à-vis non-parametric alternatives (Hoga, 2018+c, Sec. 3). Again, they all consider estimation

of only VaR and ES.

While VaR and ES are perhaps the most widely-used risk measures, they each have their distinct

drawbacks. From a theoretical and a practical viewpoint, two desirable properties of risk measures

are coherence (Artzner et al., 1999) and elicitability (Gneiting, 2011). Coherence refers to a set of

four elementary axioms for risk measures—translation invariance, subadditivity, positive homogeneity,

and monotonicity. Elicitability is crucial for sensible comparisons of forecasting performance, as it

entails the existence of a suitable—not necessarily unique—loss (or also: score) function with which

to compare different sets of forecasts. VaR is not coherent but elicitable, whereas ES is coherent but

not elicitable (Artzner et al., 1999; Gneiting, 2011).

The good performance of EVT-based estimators and the drawbacks of VaR and ES motivate the

study of EVT-based estimators of more general risk measures in this paper. Specifically, in general

location-scale models, we quantify the uncertainty in forecasts of a wide range of extreme risk measures

under some high-level conditions. Thus, the theory we develop is very general, both in the model

assumed to be driving the returns and the choice of the risk measure. As regards the allowable risk

measures, we consider extreme versions of Wang’s (1996) distortion risk measures (DRMs) introduced

by El Methni and Stupfler (2017). The class of Wang (1996) DRMs is very wide and includes—among

many others—VaR, ES and the Wang (2000) transform; see El Methni and Stupfler (2017, Table 1)

for a more complete overview.

Despite the generality of DRMs, the mean and VaR are the only elicitable DRMs (Wang and

Ziegel, 2015; Kou and Peng, 2016). Thus, we shall also consider expectiles (Newey and Powell, 1987),

which have recently become popular in risk management applications. For an extensive overview of

the theoretical and practical appeal of expectiles in risk management, we refer to Daouia et al. (2018).

One advantage of expectiles is that they are elicitable. In fact, Ziegel (2016) shows that expectiles are

the only elicitable law-invariant2 coherent risk measures. Nonetheless, DRMs may be jointly elicitable.

For instance, VaR and ES are jointly elicitable, which allows for sensible forecast comparisons of the

1The literature that proposes extreme value methods to forecast risk without providing a measure of statistical
uncertainty is much wider. Some references include McNeil and Frey (2000), Mancini and Trojani (2011), Chavez-
Demoulin et al. (2014) and Bee et al. (2016).

2A risk measure is called law-invariant if it assigns the same (scalar) risk to X and Y whenever X
D
= Y .
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pair (VaR, ES) (Fissler and Ziegel, 2016).

Expectiles also have drawbacks. First, they are not as intuitive to grasp as VaR and ES; see Subsec-

tion 2.1. Second, and perhaps more importantly, they depend on the complete probability distribution

of the underlying random variable, whereas extreme DRMs—including VaR and ES in particular—

specifically focus on the tail of interest. Third, by Proposition 2.2 of Emmer et al. (2015), expectiles

are not comonotonically additive3, i.e., they may attribute diversification benefits to comonotonic

risks. This is particularly undesirable in portfolio construction (Emmer et al., 2015, Sec. 4.2). For a

more complete, succinct overview of the relative merits of VaR, ES and expectiles we refer to Table 1

of Emmer et al. (2015); see also Dowd and Blake (2006) for some in-depths discussion of VaR and

ES. Summarizing, it is unlikely that there exists a universally preferred risk measure in any given

situation based on both theoretical and practical considerations. This echoes Dowd and Blake (2006,

p. 220), who emphasize that ‘the most appropriate risk measure depends on the assumptions we make

[...] and would appear also to be sometimes context-dependent. Any search for a single ”best” risk

measure—one that is best in all conceivable circumstances—would appear to be futile.’ Thus, a suffi-

ciently general estimation theory covering a wide class of risk measures, as presented in this paper, is

desirable.

Sometimes the information conveyed by a point forecast of risk together with a confidence interval

is not sufficient. For instance, Wang and Zhao (2016, p. 90) argue that it is important to allow for

simultaneous inference of conditional risk measures at different risk levels, as this allows to dynamically

manage the overall portfolio risk at different levels. Francq and Zaköıan (2016) argue in a similar vein.

Thus, we also derive some uniform limit theory for our conditional risk measures that allows to

construct confidence corridors for tail risk.

The paper is structured as follows. Section 2 presents the main results. It proceeds by first

introducing extreme DRMs and expectiles (Subsection 2.1) along with suitable estimators (Subsec-

tion 2.2). Subsection 2.3 transfers these risk measures and estimators to a conditional setting in

a general location-scale model. Finally, Subsection 2.4 presents pointwise and uniform asymptotic

results for the estimators of conditional tail risk. The quality of the asymptotic approximations is

assessed in a Monte Carlo study in Section 3. Section 4 presents an empirical application to asset

returns, where EVT-based and non-parametric forecasting approaches are compared for a wide range

of asset returns. The final section concludes.

3Let L1 and L2 be comonotonic r.v.s, i.e., there exist a r.v. X, and non-decreasing functions f1 and f2, s.t. L1 = f1(X)
and L2 = f2(X). A risk measure ρ is then said to be comonotonically additive, if ρ(L1 + L2) = ρ(L1) + ρ(L2).
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2 Main results

2.1 Risk measures

In this section, we first define extreme DRMs and then expectiles. Let X denote a random variable

with distribution function (d.f.) F (·) and quantile function q(·) = F←(·). We assume X to be positive

for the moment. Wang (1996) introduces the general family of DRMs, which are based on a distortion

function g : [0, 1] → [0, 1], i.e., a non-decreasing and right-continuous function with g(0) = 0 and

g(1) = 1. Then, the DRM of X with distortion function g(·) is

DRM(X) :=

∫ ∞
0

g(1− F (x)) dx. (1)

This representation nests several well-known risk measures, such as the Value-at-Risk at level δ,

qδ = F←(δ) (for g(x) = I{x≥1−δ}), and the Expected Shortfall at level δ, ESδ = E[X | X > qδ] (for

g(x) = min
{
x/(1− δ), 1

}
). Due to their generality, Wang (1996) DRMs have been studied intensively

(Wirch and Hardy, 2001; Dowd and Blake, 2006). Wirch and Hardy (2001) show that a DRM is

coherent if and only if g(·) is concave.

To investigate extreme risks, where the risk level δ ↑ 1 gets more extreme, El Methni and Stupfler

(2017) introduce an extreme version of DRMs with distortion function not depending on δ. Define

Fδ(x) = max
{

0, F (x)−δ
1−δ

}
. If the quantile function q(·) is continuous and strictly increasing in a

neighbourhood of δ, then

Fδ(x) = max

{
0,
F (x)− F (q(δ))

1− δ

}
= P

{
X ≤ x | X > q(δ)

}
.

Thus, the extreme DRM of El Methni and Stupfler (2017), defined as

DRMδ := DRMδ(X) :=

∫ ∞
0

g(1− Fδ(x)) dx,

can be interpreted as the DRM of X given X > qδ. Letting δ ↑ 1 then leads to an extreme risk

measure. As before, VaRδ and ESδ can be obtained as special cases for g(x) = I{x=1} and g(x) = x,

respectively. If the quantile function q(·) is continuous and strictly increasing in a neighbourhood of

infinity, then

DRMδ =

∫ 1

0
F←(1− (1− δ)α) dg(α) (2)

for δ sufficiently close to 1. In this notation, DRMδ can also be used for real-valued X. So at every

appearance, X refers to a real random variable from now on.

Next, we introduce expectiles by analogy with quantiles, with which they share some conceptual

similarities. Quantiles can be obtained as

qδ := qδ(X) := arg min
q∈R

E[ηδ,1(X − q)], (3)
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where ηδ,m(x) = |δ − I{x≤0}| · |x|m. Expectiles are defined via

ξδ := ξδ(X) := arg min
q∈R

E[ηδ,2(X − q)]. (4)

The minimisation problem in (4) is well-defined if E |X| <∞.

Incidentally, the properties (3) and (4) naturally lead to elicitability of both quantiles and expectiles

(Gneiting, 2011). For fixed δ > 0, the loss (scoring) function sm : R×R→ [0,∞) can simply be chosen

as sm(q, x) := ηδ,m(x− q) for quantiles (m = 1) and expectiles (m = 2). Given a set of K competing

forecasts y
(k)
1 , . . . , y

(k)
n (k = 1, . . . ,K) and realised observations x1, . . . , xn, a forecast ranking can be

obtained by comparing the average scores

s(k)m =
1

n

n∑
i=1

sm(y
(k)
i , xi). (5)

The set of forecasts y
(k)
1 , . . . , y

(k)
n with the smallest score is preferred.

For δ = 1/2, qδ equals the median and ξδ equals the mean. For general δ ∈ (0, 1), we can derive

from a first-order condition for the minimisation problem in (3),

δ =

∫ qδ
−∞ dF (x)∫ qδ

−∞ dF (x) +
∫∞
qδ

dF (x)
,

and for the minimisation problem in (4) that

δ =

∫ ξδ
−∞ |x− ξδ| dF (x)∫ ξδ

−∞ |x− ξδ|dF (x) +
∫∞
ξδ
|x− ξδ|dF (x)

=
E
[
|X − ξδ|I{X≤ξδ}

]
E |X − ξδ|

.

Thus, qδ specifies the value where the ratio of the average number of observations of the data below

qδ to the average number of observations of the data above and below qδ is 100δ%. In contrast, ξδ

specifies the value where the ratio of the average distance of the data below ξδ to the average distance

of the data above and below ξδ is 100δ%. This interpretation demonstrates that expectiles not only

depend on one tail of the distribution, like VaR and ES, but rather on the whole distribution. This

may or may not be desirable from a risk management perspective; cf. Kuan et al. (2009, Sec. 2.2).

2.2 Estimation

We first introduce an estimator of extreme VaR, because estimators of extreme DRMs and expectiles

are directly based on it. Let X denote a random variable with d.f. F (·). As mentioned in the

Motivation, we consider random variables with Pareto-type tail. To make this more precise, let

U(t) = F←(1 − 1/t). Then, we say that X has Pareto-type tail if U(·) is regularly varying with

extreme value index γ, i.e.,

lim
t→∞

U(tx)

U(t)
= xγ for all x > 0. (6)
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This condition is satisfied for the tails of a wide range of data, e.g., stock returns, trading volume, and

city sizes (Gabaix, 2009).

Relation (6) leads to the following approximate relation between extreme quantiles qβ = U(1/[1−
β]) and qδ = U(1/[1− δ]) with β < δ, both close to 1:

qδ ≈
(

1− β
1− δ

)γ
qβ. (7)

This suggests that very extreme quantiles qδ can be estimated by estimating a less extreme ‘anchor’

quantile qβ and then use the Pareto shape of the tail to extrapolate to qδ via ([1− β]/[1− δ])γ .

Let X1, . . . , Xn denote a sample of X. We mimic the asymptotics in (6) by imposing that β and

δ converge to 1 as the sample size n gets larger.

Assumption 1. The sequences βn and δn both tend to 1 with n(1− βn)→∞, n(1− δn)→ c > 0, as

n→∞.

The sequences βn and δn appearing subsequently are precisely those of Assumption 1.

Motivated by (7), we introduce the Weissman (1978) estimator

q̂δn := q̂δn(X) =

(
1− βn
1− δn

)γ̂
Xdnβne,n, (8)

where X1,n ≤ . . . ≤ Xn,n denote the order statistics and γ̂ = γ̂(X) denotes a generic estimator of γ

based on X1 . . . , Xn. For instance, one could use the Hill (1975) estimator

γ̂ = γ̂(X) = Hn(dn(1− βn)e) with Hn(k) =
1

k

k∑
i=1

log
(
Xn−i+1,n/Xn−k,n

)
. (9)

Since under the Pareto-type tail assumption (6) there is a close connection in the tail between

quantiles and extreme DRMs/expectiles, one can use q̂δn to estimate extreme DRMs and expectiles.

For extreme DRMs the key result is Lemma 3 in El Methni and Stupfler (2017), which shows that

under (6)

DRMδn

qδn
−→

(n→∞)

∫ 1

0
s−γ dg(s), (10)

provided
∫ 1
0 s
−γ−ι dg(s) <∞ for some ι > 0. Bellini and Di Bernardino (2017, Prop. 2.3) provide the

corresponding result for expectiles, which states that under (6) with γ ∈ (0, 1),

ξδn
qδn

−→
(n→∞)

(γ−1 − 1)−γ . (11)

Relations (10) and (11) provide the motivation for the plug-in estimators

D̂RMδn := D̂RMδn(X) :=

∫ 1

0
s−γ̂ dg(s)q̂δn and

ξ̂δn := ξ̂δn(X) :=
(
γ̂−1 − 1

)−γ̂
q̂δn , (12)
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where γ̂ = γ̂(X) and q̂δn = q̂δn(X). El Methni and Stupfler (2017) and Daouia et al. (2018) study

these estimators for independent, identically distributed (i.i.d.) data.

To derive limit theory for γ̂ and q̂δn , we impose a common second-order strengthening of (6) to

control bias terms in the asymptotic approximations. El Methni and Stupfler (2017) and Daouia et al.

(2018) also require such a second-order condition, termed C2(γ, ρ,A), to study the asymptotics of

D̂RMδn and ξ̂δn . Condition C2(γ, ρ,A) is said to hold if there exist γ > 0, ρ < 0 and a function A(·)
with limt→∞A(t) = 0 and constant sign, such that for all x > 0,

lim
t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
.

This is a standard assumption in EVT. Heavy-tailed distributions satisfying it are abundant (de Haan

and Ferreira, 2006, p. 76). The smaller γ, the heavier the (right) tail of the distribution. The function

|A(·)| is necessarily regularly varying with index ρ (de Haan and Ferreira, 2006, Thm. 2.3.3). Thus,

the closer ρ is to −∞, the faster A(t) converges to 0 and—as a consequence—the more accurate the

Pareto approximation U(tx)/U(t) ≈ xγ in the tail.

2.3 Estimation of conditional risk measures

To estimate extreme conditional DRMs and expectiles based on a sequence of returns Yt, we consider

a standard location-scale model. As usual, let ‖·‖ denote the Euclidean norm.

Assumption 2. The process {Yt}t∈Z is generated by

Yt = µt(θ
◦) + σt(θ

◦)εt, εt
i.i.d.∼ (0, 1), (13)

where σt(θ
◦) > 0 almost surely and θ◦ ∈ Rp a parameter vector. The innovations εt are independent

of Ft−1 = σ(Yt−1, Yt−2, . . . ;Xt−1,Xt−2, . . .), the σ-field generated by Yt−1, Yt−2, . . . and possibly ad-

ditional Rd-valued covariates Xt−1,Xt−2, . . .. Both µt(θ
◦) and σt(θ

◦) are measurable with respect to

Ft−1. Furthermore, µt(θ
◦) =

(t→∞)
OP (1) and σ−1t (θ◦) =

(t→∞)
OP (1). We assume there exists a neigh-

bourhood Θ0 of θ◦, such that µt(θ) and σt(θ) are differentiable on Θ0 with derivatives that satisfy

E
[
supθ∈Θ0

∥∥∥∂µt∂θ (θ)
∥∥∥]ι <∞ and E

[
supθ∈Θ0

∥∥∥∂σt∂θ (θ)
∥∥∥]ι <∞ uniformly in t for some ι > 0.

Location scale models such as (13) can be justified from asset pricing theory (Campbell et al.,

1997). The location-scale model of Assumption 2 is very general, nesting (under suitable parameter

restrictions) GARCH models, ARMA–GARCH models and many of their their myriad variations.

Assumption 2 imposes mild smoothness conditions on the conditional mean and the conditional vari-

ance dynamics. The requirement that σ−1t (θ◦) =
(t→∞)

OP (1) is often trivially satisfied by a positivity

constraint σ2t ≥ ω > 0 almost surely.

Let us denote by Ft−1(·) = P
{
Yt ≤ · | Ft−1

}
the conditional distribution of Yt given past informa-
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tion Ft−1. In view of (2), we define a conditional extreme DRM via

DRMδ,t−1 := DRMδ,t−1(Yt) :=

∫ 1

0
F←t−1(1− (1− δ)α) dg(α), (14)

where g(·) again denotes a distortion function. Following Newey and Powell (1987, p. 824), we define

the conditional expectile as

ξδ,t−1 := ξδ,t−1(Yt) := arg min
q

E[ηδ,2(Yt − q) | Ft−1].

Both DRMδ,t−1 and ξδ,t−1 are random variables and no longer scalars.

Under Assumption 2, the expressions for DRMδ,t−1 and ξδ,t−1 simplify. By Ft−1-measurability of

µt(θ
◦) and σt(θ

◦) and the independence of εt from Ft−1, it follows that

F←t−1(δ) = µt(θ
◦) + σt(θ

◦)F←(δ),

where F (·) denotes the d.f. of εt. Plugging this into (14) and recalling that g(0) = 0, g(1) = 1, gives

DRMδ,t−1 = µt(θ
◦)

∫ 1

0
dg(α) + σt(θ

◦)

∫ 1

0
F←(1− (1− δ)α) dg(α)

= µt(θ
◦) + σt(θ

◦) DRMδ(ε). (15)

The fact that

ξδ,t−1 = µt(θ
◦) + σt(θ

◦)ξδ(ε) (16)

follows from the location and scale equivariance of expectiles (Newey and Powell, 1987, Thm. 1).

Given a sample Y1, . . . , Yn from the location-scale model (13), we now turn to estimators of

DRMδn,n and ξδn,n, which are both measures of risk inherent in Yn+1 given the past. The condi-

tional mean µn+1(θ
◦) and the conditional variance σn+1(θ

◦) in (15) and (16) can easily be obtained

from µn+1(θ̂n) and σn+1(θ̂n), where θ̂n is an estimator of the model parameters θ◦.4 For instance,

in GARCH(p, q) models, θ̂n may be obtained from standard Gaussian quasi-maximum likelihood es-

timation (QMLE). Regarding the parameter estimator, we require

Assumption 3. The estimator θ̂n of θ◦ is such, that√
n(1− βn)

log([1− βn]/[1− δn])
(θ̂n − θ◦) = oP (1).

Assumption 3 is a mild assumption that ensures the conditional mean and conditional variance can

be estimated with sufficient precision. It holds in particular for any
√
n-consistent estimator of θ◦.

4Strictly speaking, µn+1(θ̂n) and σn+1(θ̂n) can be functions of the unobserved infinite past. Conditions under which a
truncation to the observed values of the finite past does not matter asymptotically are standard; see, e.g., Assumption A5
in Francq and Zaköıan (2015) and Francq and Zaköıan (2016), or Assumption A.3 in Du and Escanciano (2017). For ease
of exposition, we ignore this technical issue, and refer to the simulations for evidence that this issue may be neglected
for the models considered there.
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For (ARMA–)GARCH models, Francq and Zaköıan (2010) provide many
√
n-consistent estimators

under suitable parameter and moment restrictions.

Since the εt are unobserved, we use the standardised residuals

ε̂t :=
Yt − µt(θ̂n)

σt(θ̂n)
, t = 1, . . . , n, (17)

to estimate DRMδn(ε) and ξδn(ε) in (15) and (16). To be able to apply the estimation theory of

Subsection 2.2 to DRMδn(ε) and ξδn(ε), we impose

Assumption 4. The tail of the innovations εt in Assumption 2 satisfies C2(γ, ρ,A), where the function

A(·) satisfies
√
n(1− βn)A([1− βn]−1) −→

(n→∞)
0.

Many popular innovation distributions satisfy Assumption 4, e.g., the Student’s t-distribution,

which was popularized in that context by Bollerslev (1987). Hoga (2018+a, Remark 3 (c)) discusses

some methods to check the plausibility of Assumption 4 empirically. Essentially, all methods from

extreme value theory to verify a Pareto-shaped tail can be used for the residuals ε̂1, . . . , ε̂n, e.g., Hill

plots or Pareto quantile plots (Beirlant et al., 2004).

Estimators of DRMδn,n and ξδn,n can now be obtained from (15) and (16) as

D̂RMδn,n := µn+1(θ̂n) + σn+1(θ̂n)D̂RMδn(ε̂),

ξ̂δn,n := µn+1(θ̂n) + σn+1(θ̂n)ξ̂δn(ε̂).

2.4 Asymptotic results

Before we can state our main result, we need one final assumption.

Assumption 5. For a generic estimator γ̂(ε̂) of γ, we have√
n(1− βn)

σ̂
(γ̂(ε̂)− γ)

D−→
(n→∞)

Z, Z ∼ N (0, 1) (18)

√
n(1− βn)

(
ε̂dnβne,n

qβn(ε)
− 1

)
=

(n→∞)
OP (1). (19)

This high-level condition ensures that the tail shape and high, but within-sample, quantiles of the

innovations εt can be estimated with sufficient precision based on the filtered residuals ε̂1, . . . , ε̂n from

(17). Assumption 5 holds true for GARCH models and the Hill (1975) estimator (Chan et al., 2007);

for ARMA–GARCH models and the Hill (1975) estimator, the moments ratio estimator (Dańıelsson

et al., 1996) and the Csörgő and Viharos (1998) estimator (Hoga, 2018+a). Hill (2015, Theorem 1 and

Remark 9) verifies Assumption 5 under some low-level conditions. Kim and Lee (2016, Section 2.2)

do so for the PTTGARCH models of Pan et al. (2008). For non-parametric location-scale models it

is checked by Martins-Filho et al. (2018) for a Peaks-over-Threshold (POT) estimator of γ. Overall,

Assumption 5 is satisfied for a wide range of processes that are typically used to model returns on
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speculative assets. The respective estimators σ̂ of the asymptotic variance of γ̂(ε̂) can be obtained

from the above cited references.

Theorem 1. Suppose Assumptions 1–5 hold. Let Z ∼ N (0, 1) and denote by q(·) the quantile function

of ε0. Then, (i)

1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn])

(
D̂RMδn,n

DRMδn,n
− 1

)
D−→

(n→∞)
Z, (20)

if
∫ 1
0 s
−γ−1/2−η dg(s) < ∞ for some η > 0 and q(·) is continuous and strictly increasing in a neigh-

bourhood of infinity, and (ii)

1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn])

(
ξ̂δn,n
ξδn,n

− 1

)
D−→

(n→∞)
Z, (21)

if γ ∈ (0, 1), E |ε0| <∞ and q(·) is strictly increasing.

The equivalent of (20) for unconditional DRMs can be found in El Methni and Stupfler (2017,

Thm. 3), who show that (20) holds with D̂RMδn,n/DRMδn,n replaced by D̂RMδn(ε)/DRMδn(ε). Thus,

the filtering (via the estimate θ̂n) required for conditional DRMs does not introduce additional estima-

tion effects. These disappear due to Assumption 3, which ensures that θ̂n converges faster than DRM

estimates. A similar result holds true for (21), for which the unconditional analogue is Corollary 3

of Daouia et al. (2018). If θ̂n converges at the same rate as the risk measure estimates based on

the residuals, estimation effects would appear in the limiting distribution. Gao and Song (2008) and

Wang and Zhao (2016) demonstrate this for
√
n-consistent parameter and (non-parametric) VaR/ES

estimators.

For z ∈ {DRM, ξ}, we obtain the following asymptotic (1 − α)-confidence interval for zδn,n from

Theorem 1:

I1−α = ẑδn,n exp

{
∓Φ(1− α/2)σ̂

log([1− βn]/[1− δn])√
n(1− βn)

}
. (22)

Note that since log(x) ∼ x − 1 as x → 1, ẑδn,n/zδn,n − 1 can be replaced by log(ẑδn,n/zδn,n) in

Theorem 1. Drees (2003) and Gomes and Pestana (2007) show in simulations that log
(
q̂δn(ε)/qδn(ε)

)
is better approximated by the limiting normal distribution than q̂δn(ε)/qδn(ε)−1. Thus, since ẑδn(ε̂) is

a simple function of q̂δn(ε̂), we use the log-formulation of Theorem 1 to construct confidence intervals

in (22).

As argued in the Motivation, it is desirable to derive some uniform limit theory to obtain a more

complete picture of tail risk. To do so, we write δn = 1− pn for pn chosen in the obvious way. Then,

we define δn(t) = 1− pnt for t > 0. Our aim is to derive limit theory for D̂RMδn(t),n and ξ̂δn(t),n that

is uniform in the tail, i.e., uniform in t ∈ [t, t]. Wang and Zhao (2016) also derive some uniform limit

theory. Yet, their results are only valid for VaR and for δn = 1− p uniformly in p ∈ [ε, 1− ε] (ε > 0),
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so that the tail is explicitly excluded.

Theorem 2. For 0 < t < t <∞, we have that under the conditions of Theorem 1 (i)

sup
t∈[t,t]

∣∣∣∣∣∣∣
1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn(t)])

D̂RMδn(t),n

DRMδn(t),n
− 1


∣∣∣∣∣∣∣ D−→
(n→∞)

|Z| ,

and under the conditions of Theorem 1 (ii)

sup
t∈[t,t]

∣∣∣∣∣∣∣
1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn(t)])

 ξ̂δn(t),n
ξδn(t),n

− 1


∣∣∣∣∣∣∣ D−→
(n→∞)

|Z| .

Again, we use the log-formulation of Theorem 2 to obtain the asymptotic (1−α)-confidence corridor

ẑδn(t),n exp

{
−Φ(1− α/2)σ̂

log([1− βn]/[1− δn(t)])√
n(1− βn)

}
≤ zδn(t),n

≤ ẑδn(t),n exp

{
+Φ(1− α/2)σ̂

log([1− βn]/[1− δn(t)])√
n(1− βn)

}
, t ∈ [t, t],

for zδn(t),n (z ∈ {DRM, ξ}). As in the case of (unconditional) VaR, dealt with by Hoga (2018+c,

Sec. 2.3), the confidence corridor simply consists of the pointwise confidence intervals from Theorem 1.

Thus the width of the confidence corridor does not depend on t and t, as might have been expected.

3 Monte Carlo simulations

We investigate coverage of the asymptotic confidence intervals (22) for DRMδn,n and ξδn,n suggested by

Theorem 1. For conciseness, we use g(x) = I{x=1} for DRMδn,n, so that it corresponds to conditional

VaR, denoted by qδn,n. Throughout, we use Hill (1975) estimates γ̂(ε̂) of γ.

We let {Yt}t=−v+1,...,n follow a popular GARCH(1, 1) model

Yt = σtεt, where σ2t = ω◦ + α◦Y 2
t−1 + β◦σ2t−1

with (ω◦, α◦, β◦) = (0.00001, 0.1, 0.85). Estimates (ω̂◦, α̂◦, β̂◦) of the parameters are obtained from

standard Gaussian QMLE if E[ε4t ] <∞, and Laplace QMLE if E[ε4t ] =∞. The standardized residuals

are calculated via ε̂t = Yt/σ̂t, where σ̂2t = ω̂◦ + α̂◦Y 2
t−1 + β̂◦σ2t−1. Due to initialization effects in the

variance equation, we discard the first v = 10 residuals, giving us ε̂1, . . . , ε̂n to apply the theory of

Section 2. We use trajectories of length n ∈ {500, 1000, 2000} and let the risk level δn vary with n to

be consistent with Assumption 1. Specifically, we choose 1− δn ∈ {10%, 5%, 1%, 0.5%} for n = 500,

1− δn ∈ {5%, 1%, 0.5%, 0.1%} for n = 1000 and 1− δn ∈ {1%, 0.5%, 0.1%, 0.05%} for n = 2000.

For the distribution of εt, consider a Burr(β, λ, η) distribution of type XII with d.f.

F (x) = 1−
(

β

β + xτ

)λ
, x > 0, β, τ, λ > 0.
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This distribution has extreme value index γ = 1/(τλ) and second-order parameter ρ = −1/λ in

C2(γ, ρ,A). We use this distribution because it allows to vary γ separately from ρ. Recall from the dis-

cussion of condition C2(γ, ρ,A) that a smaller ρ aligns with a better fit to a Pareto tail. To obtain zero-

mean innovations with unit variance, we choose εt = RtBt/
√

E[B2
t ], where Rt are i.i.d. Rademacher

random variables (i.e., equal ±1 with probability 1/2), independent of the Bt
i.i.d.∼ Burr(β, λ, η). As

parameters for the Burr distribution, we take (β, λ, η) ∈ {(1, 0.25, 12), (1, 1, 3)} to obtain mod-

els with γ = 1/3, and (β, λ, η) ∈ {(1, 0.25, 20), (1, 1, 5)} to obtain models with γ = 1/5. We

abbreviate the corresponding four GARCH(1, 1) models by their respective values of (γ, ρ), i.e.,

(1/3,−4), (1/3,−1), (1/5,−4), (1/5,−1). For γ = 1/3 (γ = 1/5), the innovations have infinite (finite)

fourth moments, so parameters are estimated via Laplace (Gaussian) QMLE.

Regarding the choice of βn in q̂δn,n and ξ̂δn,n, we opt for a proposal of Dańıelsson et al. (2016). We

follow Hoga (2018+a) in its implementation. Let 1 ≤ kmin < kmax denote the minimal and maximal

number of upper order statistics to use in extreme value index estimation of the standardized residuals

ε̂t. The (1 − j/n)-quantile of ε0 can be estimated either non-parametrically via ε̂n−j,n, or using the

(semi-parametric) Pareto-based estimate in (8) (setting δn = 1− j/n), i.e.,

q̂1−j/n,βn := q̂1−j/n(ε̂) =

(
1− βn
j/n

)γ̂(ε̂)
ε̂dnβne,n.

This approximation should be good in the sense that the absolute distance between the Pareto-

motivated and the non-parametric estimate, |q̂1−j/n,βn − ε̂n−j,n|, is small for all j = 1, . . . , kmax. Thus,

we choose βn = β∗ with

β∗ := arg min
βn∈{1−kmin/n,...,1−kmax/n}

[
sup

j=1,...,kmax

|q̂1−j/n,βn − ε̂n−j,n|

]
. (23)

Chan et al. (2007) use kn = b1.5(log n)2c order statistics for the Hill estimator. This value motivates

the choice of kmin = b(log n)2c and kmax = b4(log n)2c in our data-driven approach in (23). Thus,

for (e.g.) n = 1000 we use between kmin/n ≈ 5% and kmax/n ≈ 20% of the largest residuals,

s.t. 80% / β∗ / 95%. Thus, we estimate the δn = 95%-, 99%-, 99.5%-, and 99.9%-quantiles based on

a non-parametric estimate of the β∗-quantile with 80% / β∗ / 95% combined with some extrapolation

to the desired extreme level via [(1− β∗)/(1− δn)]γ̂(ε̂). So any advantage in quantile estimation of the

extreme value vis-à-vis the non-parametric approach comes from this extrapolation step.

Since βn = β∗ is less extreme than δn, Assumption 1 is met. Assumptions 2 and 3 are also satisfied,

since Laplace and Gaussian QMLE are
√
n-consistent (Francq and Zaköıan, 2010). As required by

Assumption 4, the Burr distribution satisfies C2(γ, ρ,A). Finally, Assumption 5 is satisfied for σ̂ = γ̂(ε̂)

by results of Chan et al. (2007), Hoga (2018+a), or Hill (2015, Example 3.3). Here, σ̂ estimates the

asymptotic variance of the Hill estimator γ̂(ε) for the i.i.d. innovations (de Haan and Ferreira, 2006,

Thm. 3.2.5), but also the asymptotic variance of γ̂(ε̂) for the (non-i.i.d.) filtered residuals ε̂t. To

explicitly account for possible remaining serial dependence in the ε̂1, . . . , ε̂n, instead of σ̂ = γ̂(ε̂) we

12



(γ, ρ) 1− β∗ Risk measure 1− δn Bias RMSE Coverage Int. length

(1/3,−4) 15% CVaR 10% 0.24 0.57 94.4 2.12
5% 0.23 0.65 93.9 2.72
1% 0.13 1.51 84.9 4.69

0.5% 0.02 2.48 78.0 5.84

CExp 10% 0.44 0.60 80.2 1.67
5% 0.32 0.65 88.5 2.15
1% 0.14 1.48 79.2 3.73

0.5% 0.04 2.40 71.2 4.67

(1/3,−1) 11% CVaR 10% 0.30 0.71 97.4 2.95
5% 0.21 0.88 97.5 3.84
1% 0.43 2.07 92.4 6.90

0.5% 0.79 3.99 88.0 8.99

CExp 10% 0.58 0.84 89.3 2.40
5% 0.45 0.99 93.2 3.13
1% 0.69 2.34 86.1 5.64

0.5% 1.09 4.25 81.6 7.38

(1/5,−4) 15% CVaR 10% 0.33 0.46 86.6 1.49
5% 0.34 0.58 87.5 1.77
1% 0.32 0.84 82.7 2.47

0.5% 0.31 1.12 77.5 2.79

CExp 10% 0.48 0.54 52.8 1.13
5% 0.38 0.53 79.1 1.35
1% 0.30 0.65 83.1 1.88

0.5% 0.29 0.84 79.4 2.13

(1/5,−1) 11% CVaR 10% 0.37 0.61 94.2 2.15
5% 0.33 0.66 95.3 2.57
1% 0.48 1.11 90.3 3.66

0.5% 0.65 1.56 86.8 4.28

CExp 10% 0.68 0.78 62.7 1.63
5% 0.47 0.64 89.8 1.95
1% 0.43 0.88 89.6 2.78

0.5% 0.54 1.22 86.7 3.25

Table 1: Values β∗, bias, RMSE, coverage probabilities and interval lengths of asymptotic 95%-
confidence intervals averaged over 10,000 repetitions for n = 500.

use Hill’s (2010) estimator

σ̂2H :=
1

dn(1− βn)e

n∑
i,j=1

w

(
s− t
γn

)log+

(
ε̂i

ε̂dnβne,n

)
− (1− βn)γ̂

log+

(
ε̂j

ε̂dnβne,n

)
− (1− βn)γ̂

 ,
where log+(x) := log(max{x, 1}), w(·) is the Bartlett kernel, and γn → ∞ the bandwidth with

γn = o(n), and
√
n(1 − βn) → ∞. The estimator σ̂2H is consistent for the asymptotic variance of the
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(γ, ρ) 1− β∗ Risk measure 1− δn Bias RMSE Coverage Int. length

(1/3,−4) 9.4% CVaR 5% 0.27 0.70 97.4 3.09
1% 0.19 1.26 94.5 5.26

0.5% 0.13 1.94 90.3 6.59
0.01% −0.12 5.13 77.2 11.3

CExp 5% 0.35 0.66 94.1 2.45
1% 0.17 1.22 90.8 4.18

0.5% 0.11 1.90 85.8 5.24
0.1% −0.08 4.74 70.7 9.08

(1/3,−1) 7.6% CVaR 5% 0.32 0.90 97.9 3.93
1% 0.40 2.10 95.6 6.97

0.5% 0.61 2.75 92.0 8.85
0.1% 1.60 6.74 81.4 15.6

CExp 5% 0.48 0.89 94.1 3.16
1% 0.52 2.02 91.1 5.62

0.5% 0.75 2.84 86.8 7.16
0.1% 1.77 6.79 76.0 12.7

(1/5,−4) 9.4% CVaR 5% 0.35 0.52 93.3 2.00
1% 0.37 0.72 90.8 2.76

0.5% 0.37 0.96 88.7 3.18
0.1% 0.36 1.79 78.1 4.36

CExp 5% 0.39 0.49 86.1 1.52
1% 0.33 0.56 90.4 2.10

0.5% 0.33 0.73 89.2 2.42
0.1% 0.31 1.33 79.9 3.31

(1/5,−1) 7.5% CVaR 5% 0.40 0.62 96.1 2.60
1% 0.44 0.94 93.2 3.67

0.5% 0.53 1.24 89.9 4.22
0.1% 0.85 2.28 81.7 5.85

CExp 5% 0.52 0.64 89.9 1.98
1% 0.41 0.75 92.4 2.79

0.5% 0.45 0.95 89.8 3.20
0.1% 0.67 1.73 82.4 4.44

Table 2: Same as Table 1 for n = 1000.

Hill (1975) estimator under very weak conditions on the temporal dependence and is also applicable for

filtered residuals (Hill, 2015, Rem. 8). Following Hill (2010), we use the bandwidth γn = [n(1−β∗)]0.25.
Tables 1–3 display the simulation results for both conditional VaR (CVaR) and conditional Ex-

pectiles (CExp). We draw the following conclusions:

1. The better the Pareto-approximation (as indicated by a smaller value of ρ), the more observations

are used for estimation. For both values of γ ∈ {1/3, 1/5} and (e.g.) n = 1000, 9.4% of the

largest residuals are used for estimation when ρ = −4, whereas for ρ = −1 only 7.5% are
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(γ, ρ) 1− β∗ Risk measure 1− δn Bias RMSE Coverage Int. length

(1/3,−4) 5.7% CVaR 1% 0.30 1.09 97.9 5.92
0.5% 0.26 1.52 96.8 7.34
0.1% 0.04 4.02 89.2 12.5

0.05% −0.06 6.02 84.0 15.9

CExp 1% 0.26 1.04 96.6 4.70
0.5% 0.20 1.48 94.1 5.83
0.1% 0.02 3.82 84.3 10.0

0.05% −0.05 5.58 78.5 12.7

(1/3,−1) 5.0% CVaR 1% 0.44 1.51 97.7 7.17
0.5% 0.53 2.59 96.2 9.16
0.1% 1.07 5.12 89.3 15.7

0.05% 1.47 7.55 85.6 20.0

CExp 1% 0.48 1.44 94.9 5.75
0.5% 0.57 2.64 92.8 7.36
0.1% 1.12 5.05 84.4 12.6

0.05% 1.50 7.14 80.3 16.1

(1/5,−4) 5.7% CVaR 1% 0.41 0.64 95.3 3.03
0.5% 0.41 0.80 94.6 3.50
0.1% 0.42 1.45 88.5 4.81

0.05% 0.43 1.90 84.5 5.51

CExp 1% 0.36 0.51 94.7 2.31
0.5% 0.35 0.62 94.5 2.66
0.1% 0.36 1.08 89.5 3.66

0.05% 0.37 1.42 85.8 4.19

(1/5,−1) 5.0% CVaR 1% 0.46 0.80 95.8 3.74
0.5% 0.50 1.01 93.7 4.28
0.1% 0.71 1.89 86.9 5.92

0.05% 0.86 2.43 83.6 6.85

CExp 1% 0.42 0.64 95.0 2.84
0.5% 0.43 0.78 93.4 3.25
0.1% 0.56 1.42 87.4 4.49

0.05% 0.68 1.83 84.3 5.20

Table 3: Same as Table 1 for n = 2000.

used. Thus, the data-driven method of choosing β∗ picks up the different qualities of the Pareto

approximations.

2. Bias and, even more so, root mean square error (RMSE) tend to decrease the less extreme the

probability level 1− δn, and also the smaller the value of ρ (i.e., the better the approximation to

the Pareto tail). Although bias is comparable for CVaR and CExp estimation, CExp estimates

tend to be more precise in terms of RMSE. This is as expected, because for all γ ∈ (0, 1/2) the

limit in (11) is smaller than 1 and thus VaR is more extreme than the expectile at the same
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level. Put differently, VaR at level δn is equal to an expectile at a more extreme level δ′n > δn

(Kuan et al., 2009, p. 263).

3. The more extrapolation is required (i.e., the smaller 1 − δn), the worse coverage tends to be.

This may be explained as follows. For all values of 1 − δn, the limiting distribution in The-

orem 1 is the same. Thus, the different degree of required extrapolation (as measured by

[(1 − β∗)/(1 − δn)]γ̂(ε̂))—which is of course again subject to estimation uncertainty via γ̂(ε̂)—

may not be sufficiently reflected in the confidence interval (22) in finite samples. Hoga (2018+a)

shows that these distortions can be alleviated using self-normalized confidence intervals. These,

however, require functional central limit theory to hold in Assumption 5, which is more difficult

to derive.

4. The fact that RMSE is lower for CExp than for CVaR forecasts is also reflected in the narrower

confidence intervals, suggesting less estimation uncertainty. Again, the more accurate the Pareto

approximation, the lower the estimation uncertainty for CVaR and CExp, as measured by the

narrower confidence intervals.

5. As n gets larger, we observe the following: For a fixed value of 1−δn, say 1%, bias is roughly con-

stant as the sample size increases, while—as expected—the RMSE decreases. Not surprisingly,

coverage also improves the larger the sample size, even as 1− δn decreases. What is surprising,

however, is that interval lengths for a fixed 1−δn increase the larger the sample. For instance, for

(γ, ρ) = (1/3,−4) the 95%-confidence interval for 1%-CExp has average length 3.73 for n = 500,

while for n = 2000—where coverage is quite accurate—the average length is 4.70.

In general, Tables 1–3 reveal that the degree to which asymptotic distributions are accurate depends

not only on n but also on 1− δn. This is in line with the asymptotic results of Theorem 1.

4 Application

Numerous CVaR and CES forecast comparisons can be found in the literature (see Rocco, 2014, and

references therein). So we compare the CVaR and CExp forecasting performance in this application.

We include CVaR since CExp estimators closely rely on CVaR estimates, so it is of interest to compare

the two. Specifically, we forecast one-day-ahead CVaR and CExp for returns {Yt}t=1,...,N on a wide

range of speculative assets—stocks (Siemens), stock indices (CAC40), CBOE Volatility Index (VIX),

commodities (WTI oil spot price) and foreign exchange (USD/EUR exchange rate). We consider 20

years of daily log-returns from 1998 to 2017 except for the exchange rate data, where data availability

is restricted to the period from 1999 onwards, since the Euro was introduced in 1999. For the Euro

this gives us N = 4772 returns and roughly N = 5000 for the other assets. The oil price and the
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exchange rate data is taken from fred.stlouisfed.org (series DCOILWTICO and DEXUSEU) and the

other three series are downloaded from finance.yahoo.com (ticker symbols SIE.DE, FCHI and VIX).

As a location-scale model we choose a benchmark GARCH(1, 1) specification, which we estimate via

Gaussian QMLE.5 We proceed by estimating the returns based on a rolling window {Yj+t}t=−v+1,...n

(j = v, . . . , N − n) of length n + v. Similarly as in the Monte Carlo study, we only use the last

n standardized residuals {ε̂j+t}t=1,...,n in D̂RMδn(ε̂) and ξ̂δn(ε̂). Again, we choose v = 10, n ∈
{500, 1000, 2000} and we let 1−δn ∈ {10%, 5%, 1%, 0.5%} for n = 500, 1−δn ∈ {5%, 1%, 0.5%, 0.1%}
for n = 1000 and 1− δn ∈ {1%, 0.5%, 0.1% 0.05%} for n = 2000.

Based on the residuals, we compare three different approaches to estimate DRMδn(ε) = qδn(ε) and

ξδn(ε) in (15) and (16), respectively. First, we use q̂δn(ε̂) and ξ̂δn(ε̂) based on the Hill (1975) estimator,

precisely as in the simulations.

As a second estimator, we apply POT methodology to the (almost i.i.d.) standardized residu-

als. Very briefly, POT fits—via maximum likelihood—a generalized Pareto distribution (GPD) with

d.f. Gγ,σ(x) = 1 − (1 + x/[γσ])−γ (σ > 0, γ ∈ R) to the excesses above some high threshold ε̂dnβne,n.

The ML estimates (γ̂ML, σ̂ML) of (γ, σ) can then be used to estimate a more extreme VaR qδn(ε) with

δn > βn via

q̂POT
δn = ε̂dnβne,n + σ̂MLγ̂ML

( 1− δn
1− βn

)−1/γ̂ML

− 1

 .
For more detail we refer to McNeil and Frey (2000, Sec. 2.2). Martins-Filho et al. (2018) provide

asymptotic theory for POT-based VaR estimates in non-parametric location-scale models. As an

expectile estimator we then consider ξ̂POT
δn

(ε̂) =
(

1
γ̂ML − 1

)−γ̂ML

q̂POT
δn

, similarly as in (12). Following

McNeil and Frey (2000), Mancini and Trojani (2011) and Chavez-Demoulin et al. (2014), we choose

βn = 0.9 so that the largest 10% of the residuals is used for estimation.

To assess the potential benefits of both semi-parametric extreme value approaches, we consider a

third set of completely non-parametric estimators of qδn(ε) and ξδn(ε). We define a nonparametric

quantile estimator via the empirical counterpart of (3), i.e.,

q̂NP
δn = arg min

q∈R

1

n

n∑
t=1

ηδn,1(ε̂j+t − q).

An expectile estimator can be defined similarly via the empirical counterpart of (4), i.e.,

ξ̂NP
δn = arg min

q∈R

1

n

n∑
t=1

ηδn,2(ε̂j+t − q).

We evaluate the three different CVaR and CExp forecasts via their average scores s
(k)
m , k = 1, 2, 3,

5We have also tried the GJR–GARCH(1,1) of Glosten et al. (1993), which was recommended in an extreme value
context by Trapin (2018). While this model led to somewhat lower scores than those reported in Tables 4–6 for the
GARCH(1, 1), the relative differences between forecasts were unaffected.
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Data Est. CVaR CExp

1− δn 1− δn
10% 5% 1% 0.5% 10% 5% 1% 0.5%

SIE.DE Hill 0.999 0.999 0.976 0.943 1.006 1.004 0.985 0.785∗∗∗

POT 1.000 0.999 0.968 0.941 1.035∗∗∗ 1.058∗∗∗ 1.054 0.861∗∗∗

VIX Hill 1.002 0.999 0.989 0.968 1.019∗∗∗ 1.009∗∗ 1.048∗∗∗ 1.100∗∗∗

POT 1.000 1.000 0.990 0.973∗ 1.041∗∗∗ 1.076∗∗∗ 1.089∗∗∗ 1.068∗∗

CAC40 Hill 1.002 1.000 0.970∗∗∗ 0.961 1.009 0.996 0.988 0.983
POT 1.000 0.999 0.980∗∗ 0.965∗ 1.078∗∗∗ 1.101∗∗∗ 1.070∗ 1.044

USD/EUR Hill 1.003 0.997 1.003 1.009 1.028∗∗∗ 1.007∗∗ 1.015 1.024
POT 1.000 0.997∗ 1.004 0.997 1.113∗∗∗ 1.160∗∗∗ 1.182∗∗∗ 1.146∗∗∗

WTI Hill 1.000 1.000 0.993 0.995 1.018∗∗ 1.002 1.010 1.030
POT 1.000 0.999 0.991 0.981 1.091∗∗∗ 1.122∗∗∗ 1.149∗∗∗ 1.125∗∗

Table 4: Score ratios s
(k)
m /s

(3)
m for k = 1, 2 competing forecasts based on n = 500 observations. The

score s
(1)
m is based on q̂δn / ξ̂δn with the Hill (1975) estimator (Hill), s

(2)
m is based on q̂POT

δn
/ ξ̂POT

δn

(POT) and s
(3)
m on q̂NP

δn
/ ξ̂NP

δn
(NP). Significantly different performance of Hill/POT vis-à-vis NP at

the 10%/5%/1%-level is indicated by a */**/*** above the score ratio.

in (5) with m = 1 (m = 2) for the CVaR (CExp) forecasts. The different forecasts are abbreviated by

Hill (k = 1), POT (k = 2) and NP (k = 3). Tables 4–6 display the score ratios s
(k)
m /s

(3)
m for k = 1 (Hill)

and k = 2 (POT) for n ∈ {500, 1000, 2000}. Recall that lower average scores are preferable, so that

score ratios below (above) 1 indicate EVT-based estimates are better (worse) than non-parametric

ones. To test whether the average scores of Hill/POT are significantly different from NP, we use a

standard Diebold and Mariano (1995) test. Significantly different performance at the 10%/5%/1%-

level is indicated by a */**/*** above the score ratio.

We draw the following conclusions from Tables 4–6:

1. With the exception of Siemens shares, the score ratios for CVaR forecasts tend to be lower than

those for CExp forecasts. Indeed, while for CVaR estimation a sample size of n = 500 already

suffices for extreme value methods to be preferable to non-parametric estimates (Table 4), for

CExp forecasting the advantages only clearly emerge for n = 2000 (Table 6).

This may be explained as follows. Both semi-parametric expectile estimators are motivated

by the approximation of expectiles as a constant multiple of VaR given in (11). Thus, this

additional approximation may hurt the CExp forecasting precision relative to that of CVaR. Of

course, if the approximation is very exact, it offers very precise estimates. This may be the case

for Siemens returns.

2. The EVT-based estimates have a strong tendency to improve relative to NP the larger the

sample size n; see, for instance, the USD/EUR returns. This may reflect the fact that one needs
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Data Est. CVaR CExp

1− δn 1− δn
5% 1% 0.5% 0.1% 5% 1% 0.5% 0.1%

SIE.DE Hill 1.000 1.004 1.002 0.965 1.008∗ 0.986 0.964∗∗ 0.758∗∗∗

POT 1.000 1.010 1.009 1.012 1.034∗∗∗ 1.026∗∗ 0.978 0.676∗∗∗

VIX Hill 0.999 0.996 0.988 0.965 1.006 1.004 1.006 1.006
POT 0.999 0.994 0.995 0.997 1.051∗∗∗ 1.063∗∗ 1.050 0.940

CAC40 Hill 0.999 0.996 0.971∗ 0.906 1.000 0.995 0.985 0.975
POT 1.000 0.992 0.977 0.924 1.101∗∗∗ 1.071 1.059 1.002

USD/EUR Hill 1.000 0.994 0.997 0.937 1.010 1.001 1.007 1.035
POT 0.999 0.995 0.988 0.937 1.149∗∗∗ 1.181∗∗∗ 1.156∗∗ 1.049

WTI Hill 0.999 1.001 1.010 0.893 1.003 1.001 1.011 0.992
POT 1.001∗∗ 1.005 1.003 0.946 1.115∗∗∗ 1.178∗∗∗ 1.178∗∗∗ 1.038

Table 5: Same as Table 4 with forecasts based on n = 1000.

sufficiently precise γ-estimates calculated on a reasonably large sample size for extrapolation to

work well and, hence, provide an advantage over non-parametric methods.

3. For CVaR forecasts at the least extreme levels (10% for n = 500, 5% for n = 1000 and 1%

for n = 2000) there is little difference between the semi-parametric and the non-parametric

estimates. Recall that any advantage in quantile estimation via EVT comes from extrapolation.

Yet, for the least extreme levels there is little scope for extrapolation, so that performance is

quite similar. For more extreme levels, large score differences in favour of EVT can emerge. Yet,

few of these are significant, which may simply reflect that statistical inference for tail quantities

requires more data. However, the consistency with which Hill and POT beat NP for extreme risk

and large sample sizes suggests some merit in EVT methods even in the absence of statistical

significance.

4. The performance of Hill and POT is quite similar for CVaR forecasts. However, POT-based

estimates appear slightly worse for CExp forecasting, particularly for n ∈ {500, 1000}.

Overall, the Hill method appears slightly preferable over POT, since it performs better for CExp.

The degree to which EVT methods are superior to non-parametric ones depends on the sample size and

the scope for extrapolation based on the semi-parametric Pareto tail assumption. Another advantage

of the Hill/POT approach vis-à-vis NP is that—using the theory developed in this paper—estimation

risk can be quantified for a wide range of risk measure estimates. For instance, we are not aware

of any attempts to quantify estimation uncertainty of the non-parametric expectile estimator ξ̂NP
δn

in

some location-scale model. Having a measure of uncertainty is of course crucial, because as Dowd and

Blake (2006, p. 221) point out ‘any estimated risk measure reported on its own is close to meaningless

without some indicator of how precise the estimate might be.’
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Data Est. CVaR CExp

1− δn 1− δn
1% 0.5% 0.1% 0.05% 1% 0.5% 0.1% 0.05%

SIE.DE Hill 0.987∗ 0.986 0.944 0.936 1.003 1.007 1.025 0.933
POT 0.986∗∗ 0.986 0.932 1.021 1.025 1.021 0.941 0.795∗∗∗

VIX Hill 1.003 0.995 0.876 0.804 0.998 0.995 0.953 0.886
POT 0.997 0.989 0.938 0.881 1.017 1.001 0.951 0.864

CAC40 Hill 1.005 0.987 0.912 0.771 0.995 0.995 0.948 0.897
POT 0.999 0.983 0.959 0.916 1.074 1.060 0.958 0.893

USD/EUR Hill 1.000 1.007 0.938 0.815 0.998 0.999 0.972 0.924
POT 0.998 0.994 0.957 0.893 1.154∗∗ 1.114 0.992 0.923

WTI Hill 1.003 0.990 0.931 0.814 0.997 0.999 0.951 0.905
POT 1.006 0.991 0.973 0.951 1.090∗ 1.091 0.950 0.877

Table 6: Same as Table 4 with forecasts based on n = 2000.

5 Conclusion

We derive (uniform) central limit theory for forecasts of a wide range of risk measures in location-

scale models. The estimators are motivated by a Pareto-type tail assumption for the innovations.

This Pareto assumption allows all risk measure estimators to be expressed as simple functions of the

Weissman (1978) quantile estimators, which is the reason for the generality of our approach regarding

the risk measures. The finite-sample confidence intervals for the risk measures appear to work rea-

sonably well, as demonstrated in Monte Carlo simulations, even though they may be improved using

self-normalization or, potentially, other more refined methods. An empirical application demonstrates

that the semi-parametric Pareto-type tail assumption can be used to obtain risk measure estimates

that are preferable to completely non-parametric estimates in large samples.

A possible avenue for future research is to investigate bias-reduction techniques for the extreme

DRM and expectile estimates based on the standardized residuals. This work could build on Gomes

and Pestana (2007), who propose a bias-reduced VaR estimator for i.i.d. data. Another extension

worth pursuing is to consider extreme conditional risk measure estimates in multivariate models for

asset returns, similarly as was done in an unconditional context by Hoga (2018+b).
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Appendix

For brevity, we put

µ̂n+1 := µn+1(θ̂n), σ̂n+1 := σn+1(θ̂n) and µn+1 := µn+1(θ
◦), σn+1 := σn+1(θ

◦).

Lemma 1. Suppose Assumptions 2–3 hold. Then,

µ̂n+1 − µn+1 = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
, and

σ̂n+1

σn+1
− 1 = = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
.

Proof: It follows from Markov’s inequality and Assumption 2 that, uniformly in n,

P

{
sup
θ∈Θ0

∥∥∥∥∂µn+1

∂θ
(θ)

∥∥∥∥ > K

}
≤ K−ι E

[
sup
θ∈Θ0

∥∥∥∥∂µn+1

∂θ
(θ)

∥∥∥∥
]ι
−→

(K→∞)
0. (A.1)

Let θ, θ̃ ∈ Θ0. Then, we get by the mean value theorem that for some θ∗ ∈ Θ0 between θ and θ̃ that∣∣∣µn+1(θ)− µn+1(θ̃)
∣∣∣ =

∣∣∣∣∂µn+1

∂θ
(θ∗)

>(θ − θ̃)

∣∣∣∣
≤ sup

θ∗∈Θ0

∥∥∥∥∂µn+1

∂θ
(θ∗)

∥∥∥∥ ·∥∥∥θ − θ̃∥∥∥ , (A.2)

where we used the Cauchy–Schwarz inequality in the second step. For brevity, put cn =

√
n(1−βn)

log([1−βn]/[1−δn]) .

Now, for δ > 0 chosen such that ‖θ − θ◦‖ < δ implies θ ∈ Θ0, we have that

P
{
cn|µ̂n+1 − µn+1| > ε

}
≤ P

{
cn|µ̂n+1 − µn+1| > ε,

∥∥∥θ̂n − θ◦∥∥∥ < δ
}

+ P
{∥∥∥θ̂n − θ◦∥∥∥ ≥ δ}

= P
{
cn|µn+1(θ̂n)− µn+1(θ

◦)| > ε,
∥∥∥θ̂n − θ◦∥∥∥ < δ

}
+ o(1)

(A.2)

≤ P

{
cn sup

θ∗∈Θ0

∥∥∥∥∂µn+1

∂θ
(θ∗)

∥∥∥∥ ·∥∥∥θ̂n − θ◦∥∥∥ > ε,
∥∥∥θ̂n − θ◦∥∥∥ < δ

}
+ o(1)

= o(1),

where we used Assumption 3 (cn

∥∥∥θ̂n − θ◦∥∥∥ = oP (1)) and (A.1) (supθ∗∈Θ0

∥∥∥∂µn+1

∂θ (θ∗)
∥∥∥ = OP (1)) in

the final step. The first claim follows.

It follows along similar lines that

σ̂n+1 − σn+1 = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
.

Dividing by σn+1 > 0 does not change the rate, since σ−1n+1 = OP (1) by Assumption 2.
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Proof of Theorem 1: We start with the proof of (20). Write

D̂RMδn,n

DRMδn,n
− 1 =

µ̂n+1−µn+1

σn+1 DRMδn (ε)
+ σ̂n+1

σn+1

(
D̂RMδn (ε̂)
DRMδn (ε)

− 1

)
+
(
σ̂n+1

σn+1
− 1
)

µn+1

σn+1 DRMδn (ε)
+ 1

=
(I) + (II) + (III)

(IV )
.

We deal with the terms (I)–(IV ) separately.

Consider (I). Due to (10) and the fact that qδn(ε) −→
(n→∞)

∞ under the Pareto-type tail Assump-

tion 4 (de Haan and Ferreira, 2006, Proposition B.1.9.1), we get DRMδn(ε) −→
(n→∞)

∞. Combine this

with Lemma 1 and σ−1n+1 = OP (1) (from Assumption 2) to obtain

(I) = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
.

Also from Lemma 1, we get

(III) = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
.

Since µn+1 = OP (1), σ−1n+1 = OP (1) (by Assumption 2) and DRMδn(ε) −→
(n→∞)

∞,

(IV )
P−→

(n→∞)
1.

Finally, for (II) we write

D̂RMδn(ε̂)

DRMδn(ε)
− 1 =

q̂δn(ε̂)

qδn(ε)
·
∫ 1

0
s−γ̂ dg(s) · qδn(ε)

DRMδn(ε)
− 1

=
q̂δn(ε̂)

qδn(ε)
·
∫ 1
0 s
−γ̂ dg(s)∫ 1

0 s
−γ dg(s)

·

1 + o

(
1√

n(1− βn)

)− 1, (A.3)

where the final step follows from Lemma 3 (ii) in El Methni and Stupfler (2017). Equation (9) in

El Methni and Stupfler (2017) demonstrates that∫ 1
0 s
−γ̂ dg(s)∫ 1

0 s
−γ dg(s)

= 1 +OP

(
1√

n(1− βn)

)
(A.4)

under Assumption 5. Similarly as in the proof of Theorem 4.3.8 in de Haan and Ferreira (2006)

(setting kn = n(1− βn) and pn = 1− δn in their notation) it follows from Assumption 5 that

1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn])

(
q̂δn(ε̂)

qδn(ε)
− 1

)
D−→

(n→∞)
Z. (A.5)
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Combining (A.3) with (A.4) and (A.5) gives

1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn])

(
D̂RMδn(ε̂)

DRMδn(ε)
− 1

)
D−→

(n→∞)
Z.

Together with Lemma 1, this implies

(II)
D−→

(n→∞)
Z.

Putting together the results for (I)–(IV ), the conclusion follows.

It remains to prove the second statement (21). The proof is very similar, so we only highlight the

main differences. Write

ξ̂δn,n
ξδn,n

− 1 =

µ̂n+1−µn+1

σn+1ξδn (ε)
+ σ̂n+1

σn+1

(
ξ̂δn (ε̂)
ξδn (ε)

− 1

)
+
(
σ̂n+1

σn+1
− 1
)

µn+1

σn+1ξδn (ε)
+ 1

=
(I∗) + (II∗) + (III∗)

(IV∗)
.

By using (11) instead of (10) for (I∗), it follows as before that

(I∗) = oP

(
log([1− βn]/[1− δn])√

n(1− βn)

)
.

The terms (III∗) and (IV∗) converge at the same rate as (III) and (IV ), respectively. Finally, consider

(II∗) and write

ξ̂δn(ε̂)

ξδn(ε)
− 1 =

q̂δn(ε̂)

qδn(ε)
· (γ̂−1 − 1)−γ̂ · qδn(ε)

ξδn(ε)
− 1

=
q̂δn(ε̂)

qδn(ε)
· (γ̂−1 − 1)−γ̂

(γ−1 − 1)−γ
·

1 + o

(
1√

n(1− βn)

)− 1, (A.6)

where the second equality follows from Corollary 1 of Daouia et al. (2018); see also Equation (B.26) in

the supplementary material to Daouia et al. (2018). Apply the Delta method to (18) in Assumption 5

to obtain that

1

σ̂

√
n(1− βn)

(
(γ̂−1 − 1)−γ̂

(γ−1 − 1)−γ
− 1

)
D−→

(n→∞)

[
(1− γ)−1 − log(γ−1 − 1)

]
Z.

Hence,

(γ̂ − 1)−γ̂

(γ − 1)−γ
= 1 +OP

(
1√

n(1− βn)

)
. (A.7)

Combining (A.6) with (A.7) and (A.5) gives

1

σ̂

√
n(1− βn)

log([1− βn]/[1− δn])

(
ξ̂δn(ε̂)

ξδn(ε)
− 1

)
D−→

(n→∞)
Z.
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Together with Lemma 1, this yields

(II∗)
D−→

(n→∞)
Z.

Putting together the results for (I∗)–(IV∗), the conclusion follows similarly as before.

Proof of Theorem 2: We start with the result for D̂RMδn(t),n. The proof is similar to that of

Theorem 1 (i). Simply replace δn by δn(t) at every occurence in (I)–(IV ) to obtain, say, (It)–(IV t).

Then, it is easy to check that (It), (IIIt) and (IV t) converge uniformly in t ∈ [t, t] at the same rates

as (I), (III) and (IV ), respectively. Thus, it remains to consider

(IIt) =
σ̂n+1

σn+1

D̂RMδn(t)(ε̂)

DRMδn(t)(ε)
− 1

 .

Write

D̂RMδn(t)(ε̂)

DRMδn(t)(ε)
− 1 =

q̂δn(t)(ε̂)

qδn(t)(ε)
·
∫ 1
0 s
−γ̂ dg(s)∫ 1

0 s
−γ dg(s)

·
qδn(t)(ε)

DRMδn(t)(ε)

∫ 1

0
s−γ dg(s)− 1. (A.8)

A close inspection of the proof of Lemma 3 (ii) of El Methni and Stupfler (2017) shows that

qδn(t)(ε)

DRMδn(t)(ε)

∫ 1

0
s−γ dg(s) = 1 + o

(
1√

n(1− βn)

)
(A.9)

also holds uniformly in t ∈ [t, t].

Exactly as in the proof of Theorem 2 in Hoga (2018+c) (with, in his notation, kn = n(1−βn) and

pn = 1− δn) it follows that√
n(1− βn)

log([1− βn]/[1− δn(t)])

(
q̂δn(t)(ε̂)

qδn(t)(ε)
− 1

)
=

√
n(1− βn)

log([1− βn]/[1− δn])

(
q̂δn(ε̂)

qδn(ε)
− 1

)
+ oP (1) (A.10)

uniformly in t ∈ [t, t].

Combining (A.4), (A.9), (A.10) with (A.8), we obtain√
n(1− βn)

log([1− βn]/[1− δn(t)])

D̂RMδn(t)(ε̂)

DRMδn(t)(ε)
− 1

 =

√
n(1− βn)

log([1− βn]/[1− δn])

(
q̂δn(ε̂)

qδn(ε)
− 1

)
+ oP (1)

uniformly in t ∈ [t, t]. The conclusion follows with (A.5).

The proof for ξ̂δn(t),n follows along similar lines using arguments in the proof of Theorem 1 (ii).

We omit the details. The crucial difference is that

qδn(t)(ε)

ξδn(t)(ε)
= 1 + o

(
1√

n(1− βn)

)
holds uniformly in t ∈ [t, t], as a careful reading of the proof of Corollary 1 in Daouia et al. (2018)

shows; cf. (A.6).
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