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SUMMARY

We derive a structural break test for extremal dependence in β-mixing, possibly high-dimensional ran-
dom vectors with either asymptotically dependent or asymptotically independent components. Existing
tests require serially independent observations with asymptotically dependent components. To avoid esti- 10

mating a long-run variance, we use self-normalization, which obviates the need to estimate the coefficient
of tail dependence when components are asymptotically independent. Simulations show favourable em-
pirical size and power of the test, which we apply to S&P 500 and DAX log-returns. We find evidence
for one break in the coefficient of tail dependence of the upper and lower joint tail at the beginning of the
financial crisis of 2007–8, leading to more extremal co-movement. 15
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1. MOTIVATION

The study of extremal properties of time series has received considerable attention recently, not least
because of the financial crisis of 2007–8. In financial risk management, for instance, one may be interested
in the value-at-risk, i.e., a small quantile of the return distribution of risky assets, or the expected shortfall, 20

i.e., the average loss beyond the value-at-risk. Beyond these univariate distributional quantities, bivariate
extremal dependence between the components of a random vector (Xi, Yi)

T is also important. There are
many ways to measure extremal dependence, for instance the tail dependence coefficient

λ = lim
s→∞

λs = lim
s→∞

pr
{
Xi > F←X (1− 1/s) | Yi > F←Y (1− 1/s)

}
,

where it is assumed that the limit exists, and FX and FY denote the distribution functions of Xi and Yi.
The tail dependence coefficient dates back at least to Sibuya (1960). If λ > 0, we have asymptotic depen- 25

dence, and if λ = 0 there is asymptotic independence. Davis & Mikosch (2009) and Davis et al. (2013)
introduce the extremogram and pre-asymptotic extremogram as generalizations of λ and λs, respectively.

A popular framework for assessing tail dependence in the case of asymptotic independence, i.e., λ = 0,
was developed by Ledford & Tawn (1996, 1997). Transforming the continuous Xi and Yi to standard
Fréchet marginals X̃i = −1/ logFX(Xi) and Ỹi = −1/ logFY (Yi), they model the joint tail as 30

pr(X̃i > z, Ỹi > z) ∼ L(z) pr(Ỹi > z)1/η,

where η ∈ (0, 1] is the coefficient of tail dependence given tail independence and L(·) is a slowly-varying
function. If η = 1 and limz→∞ L(z) = c ∈ (0, 1], then λ = limz→∞ pr(X̃i > z | Ỹi > z) = c. If η < 1,
then λ = 0 and η can be viewed as quantifying the speed of convergence of the conditional probability to
the limit λ = 0. Here, η > 1/2, η = 1/2 and η < 1/2 correspond to positive association, independence
and negative association in the tail, respectively. Coles et al. (1999) and Poon et al. (2004) argue that the 35

pair (χ = λ, χ = 2η − 1) offers a concise description of the extremal dependence in (Xi, Yi)
T.
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The purpose of the present paper is to derive a structural break test for the extremal dependence between
the components of the random vectors (X1, Y1)T, . . . , (Xn, Yn)T, while the margins are assumed to be
identically distributed through time. More precisely, we consider

p
(η)
n,i =

(
n/kn

)1/η
pr(Xi > bx,n, Yi > by,n), (1)

where bx,n and by,n are the (1− kn/n)-quantiles ofXi and Yi, kn = o(n), and η ∈ (0, 1] is the coefficient40

of tail dependence given tail independence in Ledford & Tawn’s framework.
The use of pn,i = p

(1)
n,i has several advantages: it is convenient to calculate, invariant under transfor-

mations of the marginal distributions, nonparametric and joint tail dependence model-free. It does not
offer a complete description of the extremal dependence structure, as it is merely a scalar, but, noting that
pn,i is essentially pr(Xi > bx,n | Yi > by,n), it may be interpreted as a conditional probability. Thus, if45

Yi = Xi−h and we are interested in serial extremal dependence, it is a useful scalar, as in ‘financial ap-
plications [...] one is often interested in the persistence of a shock (an extremal event on the stock market
say) at future instants of time’ (Davis et al., 2012, p. 143). When Yi is not a lagged Xi but, say, the return
of another stock market, it may be used as a measure of how contagious shocks are in the financial system
(Bae et al., 2003; Poon et al., 2004), in which case it is again an interesting summary measure. Poon et al.50

(2004, p. 597) identify the limit of pn,i as a ‘true measure of systemic risk’. Finally, pn,i may be scaled to
give p(η)n,i so that its limit is revealing even when η < 1, and hence λ = 0 is uninformative.

While break detection in general measures of dependence, e.g., the covariance, has been studied ex-
tensively (e.g., Aue et al., 2009; Wied et al., 2012), only Bücher et al. (2015) propose a structural break
test for the tail dependence coefficient. Tail dependence is crucial in many financial applications, where55

dependencies may only be inadequately captured by traditional measures (Embrechts et al., 2002; Bae
et al., 2003; Poon et al., 2004). For instance, the Pearson correlation neither distinguishes large/small nor
positive/negative returns and hence frequently underestimates the risk of joint extreme events.

Bücher et al. (2015) require temporally independent data, which is implausible in financial contexts. We
address this by allowing for β-mixing data. To obviate the need to estimate a long-run variance in our test60

statistic, which is typically complicated by the presence of serial dependence, we use self-normalization
(Shao & Zhang, 2010).

As a second extension of Bücher et al. (2015), who assume asymptotically dependent data with η =
1, we also allow for weaker forms of dependence between Xi and Yi, where η < 1. This substantially
widens applicability. For instance, as shown by Poon et al. (2003, 2004), different strengths of linkages65

corresponding to η = 1 and η < 1 may be found between stock indices. Stock index returns in the U.K.,
Germany and France appear to have strong extremal dependence, with η = 1. However, the returns of
stock markets in Europe, the U.S.A. and Japan exhibit η < 1. By virtue of self-normalization it turns out
that our test may be applied without any knowledge or need for estimation of η.

Our third main contribution is to study asymptotics under local alternatives and alternatives with a70

change in η. The former alternatives are interesting, because the local power of change-point tests in
extreme-value settings can be different from standard n−1/2-results in, e.g., Wied et al. (2012), and typ-
ically depends on kn (Hoga, 2017c). The latter alternatives are relevant in empirical applications, where
preliminary evidence suggests possible breaks in η for stock index returns (Poon et al., 2003, 2004).

Finally, we consider testing for multiple changes, employing a variant of self-normalization proposed75

by Zhang & Lavitas (2018+). Unlike the extensions suggested by Shao & Zhang (2010) to deal with more
than one break, their approach does not require the number of change points to be pre-specified and has a
computational burden that does not increase in the number of possible change-points.

2. MAIN RESULTS

2·1. Preliminaries80

Consider a bivariate R2-valued stochastic process
{
Vn,i = (Xi, Yi)

T
}
n∈N,i=1,...,n

. Let Zi ∈ {Xi, Yi}
be a generic component of Vn,i and denote byFZ its time-invariant distribution function. Strictly speaking,
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we should write Vn,i = (Xn,i, Yn,i)
T. However, for notational convenience and to emphasize the time-

invariance of the marginal distributions, we shall suppress the array notation in the marginals.
Even under the alternative of a change in the extremal dependence, we assume identically distributed 85

marginals. Bücher et al. (2015) attempt to weaken that assumption in their independent setting by allowing
for a one-time break in the marginal distributions. Yet in this case, the limiting distribution of their test
statistic is not tractable, as it depends on the unknown breakpoint of the marginal distributions. We leave
the task of allowing for non-identically distributed marginals in our test for future study.

Denote by Z(1) ≥ · · · ≥ Z(n) the order statistics of a sample Z1, . . . , Zn. As we are interested in tail 90

dependence, we need some intermediate sequence kn ∈ N with kn ≤ n− 1, such that kn →∞ and
kn/n→ 0 as n→∞. This sequence controls the number of large observations used in the estimation
of the extremal dependence of Xi and Yi, and hence specifies where the tail begins.

Since kn/n→ 0, the quantity p(η)n,i in (1) is a measure of tail dependence. A natural estimator of p(η)n,i is
its empirical analogue 95

p̂n =

(
n

kn

)1/η
1

n

n∑
i=1

I(Xi>X(kn+1),Yi>Y(kn+1)), (2)

where I(·) denotes the indicator function. We shall see that there is no need to estimate η for our test to
work. Introduce cn = cn(η) = n(kn/n)1/η , which will turn out to be the squared convergence rate of p̂n.

If there is doubt whether extremal dependence in (X1, Y1)T, . . . , (Xn, Yn)T is constant over time, one
may wish to test the hypothesis

H(η)
0 : p

(η)
n,i = p

(η)
n,1 + o(c−1/2n ),

H(η)
1 : p

(η)
n,i = p

(η)
n,1 + o(c−1/2n ) +Mc−1/2n I(i>bnt∗c),

i = 1, . . . , n, (3)

where t∗ ∈ (0, 1) denotes the breakpoint, M 6= 0 the magnitude of the break and the o(c−1/2n )-terms are 100

uniform in i. In the leading case η = 1, we simply writeH0,H1, pn,i instead ofH(1)
0 ,H(1)

1 , p(1)n,i.
At first sight it may appear that the null to be tested depends on n. However, as (3) is an asymptotic

relation, this is not the case. The null to be tested depends on kn, which is restricted by Assumptions 2 and
3 below. The faster kn is allowed to grow, the smaller the pre-asymptotic differences, Mc

−1/2
n , we can

detect. This means that the more observations we can use in estimation, the easier it is to detect changes 105

in the extremal dependence. Also, the larger η, i.e., the more heavily dependent Xi and Yi, the smaller the
pre-asymptotic differences, Mc

−1/2
n , we can detect. We consider alternatives in a c−1/2n -neighbourhood,

whereas usually n−1/2-neighbourhoods are studied. This is because the estimator p̂n is essentially c1/2n -
consistent and not n1/2-consistent. Since for larger η more observations will lie in the joint tail, it is quite
intuitive that the convergence rate c1/2n of p̂n increases in η. 110

The case η = 1 is dealt with for serially independent {(Xi, Yi)
T} by Bücher et al. (2015). They assume

pn,i = (n/kn) pr(Xi > bx,n, Yi > by,n)→ λi > 0 as n→∞, and test

Hλ0 : λ1 = · · · = λn,

Hλ1 : λ1 = · · · = λbnt∗c 6= λbnt∗c+1 = · · · = λn, t∗ ∈ (0, 1).

There are several reasons why we prefer to testH0 rather thanHλ0 . If limn→∞ pn,1 = λ, then under both 115

H0 andH1 we have limn→∞ pn,i = λ. Hence,H1 may be termed a local alternative, as bothH0 andH1

are covered under Hλ0 . Yet Theorem 2 below shows that our test has non-trivial power for H1. Thus, to
testHλ0 Bücher et al. (2015, Ass. 3.1 & 3.2) impose the additional second-order type assumption

k1/2n

(
pn,i − λi

)
−→ 0, n→∞, (4)

uniformly in i = 1, . . . , n, which prohibits pre-asymptotic fluctuations as under H1. Theorem 2 shows
that the test by Bücher et al. (2015) is not only a test ofHλ0 , but also implicitly of (4), because a violation 120

of (4), even without an accompanying change in λi, ultimately leads to a rejection.
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For illustration, assume that (4) holds for i = 1, . . . , bnt∗c, yet for i = bnt∗c+ 1, . . . , n we have

k1/2n (pn,i − λi) −→M 6= 0, n→∞.

Also assume λ1 = · · · = λn. Then we are underHλ0 , yet k1/2n (pn,1 − pn,n)→M 6= 0 as n→∞, which
is only covered by H1. Theorem 2 shows that, as the size of |M | grows, Hλ0 will eventually be rejected
even though Hλ0 is true. So one reason we prefer a test of the pair H0,H1 is that they are more explicit125

about what exactly is being tested.
Assumption (4) also presupposes a lot of knowledge about λi, which is not even known to be constant

in the sample. Finally, (4) may be hard to verify. For instance, Davis & Mikosch (2009, Sec. 4.1) could
not verify it for (Xi, Yi = Xi−h)T with {Xi} a GARCH(1, 1)-process.

The serial dependence concept we use is that of β-mixing. A possibly triangular sequence of random130

vectors
{
Vn,i

}
n∈N,i=1,...,n

is β-mixing if

βn (l) = sup
m∈{1,...,n−l−1}

E

{
sup

A∈Fn
n,m+l+1

∣∣∣pr(A | Fmn,1)− pr(A)
∣∣∣} −→ 0, l→∞, (5)

where Fmn,l is the σ-algebra generated by {Vn,l, . . . , Vn,m}. We allow for a triangular array to also cover

the alternative H(η)
1 in our development. If Vn,i = Vi is a sequence of β-mixing random vectors, then

array β-mixing in the sense of (5) follows.
As a model for the joint tail of (Xi, Yi)

T, we impose the Ledford–Tawn model135

F i(x, y) = pr
(
X̃i > x, Ỹi > y

)
= Li(x, y)(xy)−1/(2η), η ∈ (0, 1],

where Li(·, ·) is a bivariate slowly-varying function, i.e., there exists a function gi(·, ·) such that for all
x, y, c > 0 it holds that gi(cx, cy) = gi(x, y) and

gi(x, y) = lim
r→∞

Li(rx, ry)

Li(r, r)
. (6)

We can now state our main assumptions.

Assumption 1. The marginals of Vn,i have identical continuous distribution functions. The joint tail
of Vn,i is governed by the Ledford–Tawn model, where (6) holds uniformly on {(x, y)T ∈ (0,∞)2 :140

x2 + y2 = 1} with lim supr→∞ Li(r, r) ≤ C <∞ for C independent of i ∈ N.

Assumption 2. The process
{
Vn,i

}
n∈N,i=1,...,n

is β-mixing with mixing coefficients βn (·), such that

lim
n→∞

{
n

rn
βn (ln) + rnc

−1/2
n (η)

}
= 0

for integer sequences {ln}n∈N, {rn}n∈N tending to infinity with ln = o(rn) and rn = o(n).

Assumption 3. The following limits are uniform in j ≥ 0:

lim
n→∞

1

rn

(
n

kn

)1/η

var


j+rn∑
i=j+1

I(Xi>bx,n,Yi>by,n)

 = σ2 ∈ (0,∞), (7)145

lim
n→∞

1

rn

(
n

kn

)1/η

var


j+ln∑
i=j+1

I(Xi>bx,n,Yi>by,n)

 = 0.

Remark 1. By a probability integral transform-type argument, Assumption 1 allows us to prove the
main results for Vn,i with standard Fréchet-distributed marginals. The Ledford–Tawn model is a mild as-
sumption on the joint tail, as ‘[a]ll bivariate extreme value dependence structures and the great majority of
dependence structures that exist within the copula literature have extremal dependence structures that can150
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be represented in the form’ (Ramos & Ledford, 2009, p. 221). Assumption 2 allows for the application of
a standard big block/small block argument. The small blocks of length ln are asymptotically negligible
and the big blocks of length rn converge to some well-defined limit by virtue of a standard functional cen-
tral limit theorem. Similar mixing conditions have been used by, e.g., Drees & Rootzén (2010) and Hoga
(2017a). Assumption 3 facilitates the application of functional central limit theory for the big blocks and 155

small blocks. Proposition 1 below provides more easily verified sufficient conditions for Assumption 3.

Remark 2. Suppose that geometric β-mixing holds, i.e., βn(ln) = O(Kln) for someK ∈ (0, 1), which
is satisfied for many linear and non-linear processes (Liebscher, 2005; Meitz & Saikkonen, 2008). Then,
for ln =

⌈
−2 log n/ logK

⌉
it is easy to show that (n/rn)βn(ln) = o(1) for any sequence rn →∞. So if

kn ∼ anb for a > 0, Assumption 2 is compatible with b ∈ (1− η, 1), which is also required for the con- 160

vergence rate c1/2n (η) = n1/2(kn/n)1/(2η) of p̂n to tend to infinity. Thus, Assumption 2 is not restrictive.

The next proposition gives easier-to-verify sufficient conditions for Assumption 3 to hold.

PROPOSITION 1. Suppose that Vn,i = Vi is a strictly stationary sequence of random vectors and that
for all m ∈ N0(

n

kn

)1/η

pr
(
X1 > bx,n, Y1 > by,n, X1+m > bx,n, Y1+m > by,n

)
−→ cm, n→∞, (8)

where c0 > 0, and 165

lim
h→∞

lim sup
n→∞

(
n

kn

)1/η rn∑
m=h+1

pr
(
X1 > bx,n, Y1 > by,n, X1+m > bx,n, Y1+m > by,n

)
= 0. (9)

Then, Assumption 3 is met with σ2 = c0 + 2
∑∞
m=1 cm > 0 if limn→∞ rn(kn/n)1/η = 0.

Remark 3. An almost trivial, yet quite useful sufficient condition for (9) is

lim
h→∞

lim sup
n→∞

(
n

kn

)1/η rn∑
m=h+1

pr
(
X1 > bx,n, X1+m > by,n

)
= 0. (10)

Davis & Mikosch (2009) verify (10) for generalized autoregressive conditional heteroscedasticity and
stochastic volatility models. Multivariate regular variation is sufficient for (8) in the serial extremal de-
pendence case where Yi is a lagged Xi, i.e., Yi = Xi−h. Fasen et al. (2010) show that multivariate regular 170

variation holds for many popular time series models.

2·2. Results under the null and under the alternative

For 0 ≤ s < t ≤ 1, we define pseudo-subsample estimates of p(η)n,i via

p̂n(s, t) = p̂
(η)
n,kn

(s, t) =

(
n

kn

)1/η
1

n(t− s)

bntc∑
i=bnsc+1

I(Xi>X(kn+1),Yi>Y(kn+1)). (11)

We call this a pseudo-estimate, because η is typically unknown. In change-point analysis one frequently
compares subsample estimates à la 175

Gn(t) = c1/2n t(1− t)
{
p̂n(0, t)− p̂n(t, 1)

}
, t ∈ [0, 1], (12)

and rejects H(η)
0 if some test statistic based on Gn(t), e.g., Tn = σ̂−2

∫ 1

0
G2
n(t)dt, is too large. However,

estimates σ̂2 of the long-run variance of p̂n(0, 1) may lead to nonmonotonic power, where power of
change-point tests does not increase the more extreme the alternative (Vogelsang, 1997, 1999). Hence,
it is desirable to obviate the need to estimate the long-run variance. This is conveniently achieved by
self-normalization, developed in a change-point context by Shao & Zhang (2010). Self-normalized test 180

statistics have been applied in extreme-value contexts by Hoga (2017c) and Hoga & Wied (2017).
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Table 1. (1− ν)-quantiles cν of limiting distri-
bution in (13) for different levels ν ∈ (0, 1).

ν 0·1 0·05 0·025 0·01 0·005 0·0001
cν 29·6 40·1 52·2 68·6 84·6 121·9

THEOREM 1. Suppose Assumptions 1–3 are met. Then, underH(η)
0 ,

Un = sup
t∈[0,1]


[
t(1− t)

{
p̂n(0, t)− p̂n(t, 1)

}]2
∫ t
0

[
s
{
p̂n(0, s)− p̂n(0, t)

}]2
ds+

∫ 1

t

[
(1− s)

{
p̂n(s, 1)− p̂n(t, 1)

}]2
ds



−→ sup
t∈[0,1]


[
W (t)− tW (1)

]2∫ t
0

[
W (s)− s

tW (t)
]2

ds+
∫ 1

t

[
W (1)−W (s)− 1−s

1−t
{
W (1)−W (t)

}]2
ds

 , (13)185

in distribution as n→∞, where W (·) denotes a standard Brownian motion.

The null is rejected at level ν ∈ (0, 1) if Un is larger than the (1− ν)-quantile of the limiting random
variable in (13). Critical values are tabulated in Shao & Zhang (2010, Table 1) and are repeated in Table 1.

Theorem 1 reveals that self-normalization serves a double purpose here. It obviates the need to estimate
an asymptotic variance, but also the need to estimate or even know η, because the factor (n/kn)η in190

(11) cancels in the numerator and denominator of Un. This is crucial in both settings where our test
can be used. In the case of serial extremal dependence where Yi = Xi−h, estimation theory for η relies on
heuristics (Ledford & Tawn, 2003, Sec. 5). When Yi is not a laggedXi, existing work heavily uses serially
independent (Xi, Yi)

T (Peng, 1999; Draisma et al., 2004), which is often not credible in applications.
One-time break alternatives are picked up by the numerator of Un that compares subsample pseudo-195

estimates of p(η)n,i . The denominator, a functional of squared differences of the p̂n(s, t)’s, obviates the need

to estimate the long-run variance, and it accounts for the one-break alternative H(η)
1 , thus avoiding the

problem of nonmonotonic power caused by large estimates σ̂ that counteract large values of Gn(t) under
the alternative (Shao & Zhang, 2010). To see how self-normalization circumvents this problem, note that
for t = t∗ the two summands in the denominator of Un areOpr(1), because, heuristically, both integrands200

are based on samples without structural breaks and hence are Opr(1) uniformly in s.
Self-normalization has additional advantages: unlike for kernel-variance estimators, no tuning parame-

ters need to be chosen; it is easy to implement because p̂n(0, t) and p̂n(t, 1) need be calculated anyway;
it offers good finite-sample performance (Shao & Zhang, 2010; Hoga, 2017b; Hoga, 2017c; Hoga &
Wied, 2017); the computational burden is low; and in change-point contexts, no additional assumptions205

are needed that may otherwise be required for, e.g., valid bootstrap procedures.
The behaviour of our test under the local alternative inH(η)

1 is given in

THEOREM 2. Suppose Assumptions 1–3 are met. Then, underH(η)
1 ,

lim
|M |→∞

lim
n→∞

pr (Un > cν) = 1,

where cν is the critical value for level ν ∈ (0, 1).

Theorem 2 shows that power under local alternatives can be arbitrarily large as the magnitude |M | in210

H(η)
1 increases, so our test has non-trivial power in a c−1/2n -neighbourhood. This neighbourhood is the

smaller and thus local power higher, the larger the value of η. This is to be expected because for higher
values of η more observations lie in the joint tail, thus aiding the detection of changes. The proof of
Theorem 2 reveals that the limiting distribution of Un diverges at rate M2.
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Estimates of tail dependence between international stock indices obtained by Poon et al. (2003, 2004) 215

strongly suggest the possibility of breaks in the parameter η. The following theorem shows that a test of
constancy of η based on Un is also consistent.

THEOREM 3. Suppose that {V pre
n,i } and {V post

n,i } satisfy Assumptions 1–3 with σ, η replaced by σpre,

ηpre ∈ (0, 1] and σpost, ηpost ∈ (0, 1], respectively. Also suppose that H(ηpre)
0 and H(ηpost)

0 hold for {V pre
n,i }

and {V post
n,i } with p(ηpre)

n,1 −→ cpre
0 > 0 and p(ηpost)

n,1 −→ cpost
0 > 0 as n→∞, respectively. Finally, suppose 220

that

Vn,i =

{
V pre
n,i , i = 1, . . . , bnt∗c,
V post
n,i , i = bnt∗c+ 1, . . . , n,

t∗ ∈ (0, 1),

satisfies Assumption 2 with η = min(ηpre, ηpost). Then, underHA : ηpre 6= ηpost, limn→∞ pr (Un > cν) =
1, where cν is the critical value for level ν ∈ (0, 1).

Theorems 2 and 3 together show that there are two possible implications if the test statistic Un falls in
the critical region. In Theorem 2 the coefficient η is assumed to be constant, so that any differences in tail 225

dependence arise only through the different asymptotic behaviour of p(η)n,i . Under the stronger alternative
HA considered in Theorem 3, however, the change in tail dependence is more pronounced as the proba-
bility pr(Xi > bx,n, Yi > by,n) requires a different scaling before and after the break. Thus, to be able to
interpret a rejection of our test in empirical applications, one needs to check whether or not a constant η is
plausible. If η appears unchanged, the break can then be pinpointed to p(η)n,i . An analysis of the constancy 230

of η could follow Poon et al. (2003, 2004); see also the application in § 4.

Remark 4. So far we have considered only pairwise dependencies, but one may be interested in the
joint extremal dependence of D-variate random vectors (X1,i, . . . , XD,i)

T, D ≥ 2, and consider

p
(D)
n,i = (n/kn)1/ηD pr

(
X1,i > b1,n, . . . , XD,i > bD,n

)
, (14)

where bd,n denotes the (1− kn/n)-quantile of Xd,i (d = 1, . . . , D). Imposing Assumptions 1 and 2 for
the re-defined Vn,i = (X1,i, . . . , XD,i)

T and replacing I(Xi>bx,n,Yi>by,n) with I(X1,i>b1,n,...,XD,i>bD,n) 235

in Assumption 3, one may construct change-point tests by re-defining Un in terms of

p̂(D)
n (s, t) =

(
n

kn

)1/ηD 1

n(t− s)

bntc∑
i=bnsc+1

I(X1,i>X1,(kn+1),...,XD,i>XD,(kn+1)), ηD ∈ (0, 1],

where Xd,(kn+1) denotes the (kn + 1)-largest value of Xd,1, . . . , Xd,n (d = 1, . . . , D). For the multivari-
ate extension of Assumption 1, see Ramos & Ledford (2009). Charpentier & Segers (2009) summarize de-
pendence structures in Archimedean copulas with existing limits in (14). For some important sub-families,
such as the Clayton, Frank or Ali-Mikhail-Haq families, ηD = η = 1 is independent of the dimensionality. 240

2·3. Extension to multiple breaks

The change-point test based on Un is designed to be consistent under a one-break alternative, but there
may be multiple breaks in the extremal dependence structure. Shao & Zhang (2010, Sec. 2.3) outline
adaptations of Un that take into account the possible presence of m breaks. However, Zhang & Lavitas
(2018+) show in simulations that mis-specifying the typically unknown number of possible change points 245

m leads to a loss in power of the test of Shao & Zhang (2010), which also becomes computationally
prohibitive ifm > 2. To address these problems, Zhang & Lavitas (2018+) propose unsupervised change-
point tests that do not require specifying m and have a constant computational cost. The price to pay is
lower power if the number of breaks is correctly specified in Shao & Zhang’s (2010) test.

We follow Zhang & Lavitas (2018+) in constructing tests against the m-break alternative 250

H(η)
1,m : p

(η)
n,i = p

(η)
n,1 + o(c−1/2n ) +Mjc

−1/2
n , M0 = 0, Mj 6= 0 (j > 0),
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uniformly in i = bnt∗jc+ 1, . . . , bnt∗j+1c, j = 0, . . . ,m, where t∗0 = 0, t∗m+1 = 1 and minj=0,...,m(t∗j −
t∗j−1) > ε with t∗j (j = 1, . . . ,m) denoting the breakpoints. To do so, set Ŝn(t) = c

1/2
n tp̂n(0, t) and put

D(W, t1, t2, t3) =
1

(t3 − t1)1/2

[
W (t2)−W (t1)− t2 − t1

t3 − t1
{
W (t3)−W (t1)

}]
,

Ξ(W, t1, t2, t3) =
1

(t3 − t1)2

(∫ t2

t1

[
W (s)−W (t1)− s− t1

t2 − t1
{
W (t2)−W (t1)

}]2
ds

+

∫ t3

t2

[
W (t3)−W (s)− t3 − s

t3 − t2
{
W (t3)−W (t2)

}]2
ds

)
.255

Then, our test statistic is defined as

Tn = T (Ŝn) = sup
ε≤r1<r2≤1−ε
r2−r1≥ε

D2(Ŝn, 0, r1, r2)

Ξ(Ŝn, 0, r1, r2)
+ sup
ε≤r1<r2≤1−ε
r2−r1≥ε

D2(Ŝn, r1, r2, 1)

Ξ(Ŝn, r1, r2, 1)
. (15)

The test statistic Tn can be given a more revealing form by noting that

D(Ŝn, 0, r1, r2) =

(
cn
r2

)1/2

r1
r2 − r1
r2

{
p̂n(0, r1)− p̂n(r1, r2)

}
,

Ξ(Ŝn, 0, r1, r2) =
cn
r22

(∫ r1

0

[
s
r1 − s
r1

{
p̂n(0, s)− p̂n(s, r1)

}]2
ds

+

∫ r2

r1

[
(r2 − s)

s− r1
r2 − r1

{
p̂n(r1, s)− p̂n(s, r2)

}]2
ds

)
.260

Similar expressions can be given for the second term on the right-hand side of (15). Under the alternative,
D(Ŝn, 0, t

∗
1, t
∗
2) picks up the changes via the two subsample estimates. At the same time Ξ(Ŝn, 0, t

∗
1, t
∗
2)

does not diverge, as the two integrals only contain estimates based on subsamples without structural
breaks. This logic applies no matter how many additional breakpoints t∗3, . . . , t

∗
m there may be.

THEOREM 4. Suppose Assumptions 1–3 are met. Then, (i) underH(η)
0 ,265

Tn −→ sup
ε≤r1<r2≤1−ε
r2−r1≥ε

D2(W, 0, r1, r2)

Ξ(W, 0, r1, r2)
+ sup
ε≤r1<r2≤1−ε
r2−r1≥ε

D2(W, r1, r2, 1)

Ξ(W, r1, r2, 1)
= T (W ),

in distribution as n→∞, where W (·) denotes a standard Brownian motion, and (ii) underH(η)
1,m,

lim
min

j=1,...,m
|Mj |→∞

lim
n→∞

pr
{
Tn > cν,T

}
= 1,

where cν,T is the (1− ν)-quantile of T (W ) for ν ∈ (0, 1).

3. SIMULATIONS

We investigate size and power of our test based on Un in finite samples. In line with results in Zhang
& Lavitas (2018+), unreported simulations indicate that the test based on Tn has comparable size, yet270

reduced power in case there is only one break, as we shall assume below. In the simulations for Tn
we followed Zhang & Lavitas (2018+) and others in choosing ε = 0·1. We only consider alternatives
H(η)

1 , since the power will only be higher under the more drastic tail dependence change under HA. All
simulations are run using R version 3.4.1 (R Core Team, 2017). We use 10,000 replications throughout.

As always in applications of extreme value theory, the choice of kn in finite samples is a delicate issue,275

because kn is only specified asymptotically. We adapt the version of the plateau-finding algorithm of
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Table 2. Rejection frequencies in % for nominal levels 10%, 5%
and 1% of tests based on Un for trajectories of length n from

model (16)

φ η Hyp. t∗ n = 500 n = 2000

10% 5% 1% 10% 5% 1%

0 1 H(η)
0 9·7 4·8 1·1 10 5·3 1·0
H(η)

1 0·25 43 30 12 82 72 45
0·50 74 62 37 99 96 86
0·75 58 44 22 92 87 68

1/2 H(η)
0 11 5·8 1·4 10 5·9 1·6
H(η)

1 0·25 30 19 6·2 48 35 16
0·50 55 43 21 73 63 42
0·75 42 30 13 60 49 28

1/3 1 H(η)
0 11 5·8 1·3 10 5·6 1·2
H(η)

1 0·25 32 20 6·3 69 56 29
0·50 60 47 23 95 90 73
0·75 47 35 16 86 77 54

1/2 H(η)
0 11 6·0 1·5 11 5·8 1·3
H(η)

1 0·25 24 15 4·1 45 32 13
0·50 47 34 15 74 64 40
0·75 37 25 10 61 50 28

Frahm et al. (2005, Sec. 4.4) used by Bücher et al. (2015), where kn necessarily lies between roughly
n1/2/2 and n. While a choice of kn in the neighbourhood of n is not allowed by theory, even values
of around n1/2/2 may be considered large in typical applications of extreme value theory. Hence, we
propose the following adaptation. 280

Set bn =
⌊
n0·9/100

⌋
and choose the plateau lengthmn = (n− 2bn)1/2. Let kmax

n =
⌊
n0·8

⌋
and kmin

n =
b10 log nc represent the maximal and minimal value of kn that one is willing to use. In a first step, set
η = 1 without loss of generality. Then full-sample estimates p̂(η=1)

n,k = p̂
(η=1)
n,k (0, 1) (k = 1, . . . , kmax

n +
mn − 1 + 2bn) from (11) based on different numbers of upper order statistics are smoothed by taking
rolling window means of (2bn + 1) successive values. This leads to p1, . . . , pkmax+mn−1. Then, define a 285

plateau p(k) = (pk, . . . , pk+mn−1) for k = 1, . . . , kmax
n , and the sum of the absolute deviations between

the first entry and all others by SAD(k) =
∑k+mn−1
i=k+1 |pi − pk|. Finally, kn = k∗n is chosen as

k∗n = arg min
k=kmin

n ,...,kmax
n

SAD(k).

The choice of k∗n is not affected by the particular η, since the pre-factor (n/kn)η in (11) does not affect the
minimum of SAD(k), so we could assume η = 1 without loss of generality. Setting kmin

n = 1 is possible,
but if joint exceedances above a high threshold are rare, it may happen that p1 = · · · = pmn

= 0. Hence, 290

k∗n = 1 is chosen not because p̂i-estimates do not vary much for different kn’s close to k∗n, but only
because joint high threshold exceedances did not occur.

By definition of kmin
n and kmax

n , k∗n has a rate between log n and n0·8, which seems to agree more with
typical growth rates of kn considered in extreme value theory (Reiss & Thomas, 2007). If kn ∼ anb,
a > 0, then theory requires b > 1− η by Remark 2. In our simulations where η is known we could take 295

this restriction into account, but η is unknown in practice, so it will be interesting to see how our η-
independent choice k∗n performs.

To introduce different degrees of dependence in our simulated models, consider the Joe copula

C(u, v) = ψ{ψ−1(u) + ψ−1(v)}, 0 ≤ u, v ≤ 1,
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with generator ψ(t) = 1− {1− exp(−t)}1/θ, θ ∈ [1,∞). Bivariate random vectors (Xi, Yi)
T with Joe

copula exhibit asymptotic dependence with η = 1 and λ = limn→∞ p
(1)
n,i = 2− 21/θ, while the negated300

(−Xi,−Yi)T exhibit asymptotic independence with η = 1/2 and limn→∞ p
(1/2)
n,i = θ (Heffernan, 2000,

Table 1).
We first simulate from the simple vector autoregressive model of order 1

(Xi, Yi)
T = φ(Xi−1, Yi−1)T + (εxi , ε

y
i )T, (16)

where φ ∈ {0, 1/3} and (εxi , ε
y
i )T are independent and identically distributed. The innovations (εxi , ε

y
i )T

are marginally standard normal. We consider two models for their dependence structure. To investigate the305

asymptotically dependent case η = 1, we first use the Joe copula with parameters θ = θn,i chosen such
that limn→∞ p

(1)
n,i = 1/4 under the null and limn→∞ p

(1)
n,i = 1/4 + 1/2I(i>bnt∗c) under the alternative.

Second, for the asymptotically independent case η = 1/2, we assume (−εxi ,−ε
y
i )T to have a Joe copula

with parameters θ = θn,i chosen such that for (εxi , ε
y
i )T, we have limn→∞ p

(1/2)
n,i = 4/3 under the null and

limn→∞ p
(1/2)
n,i = 4/3 + 8/3I(i>bnt∗c) under the alternative. So in both cases of asymptotic dependence310

and independence there is a threefold increase in limn→∞ p
(η)
n,i .

It is easy to verify Assumptions 1–3 for (Xi, Yi)
T in (16) when φ = 0. Assumption 1 is easy, yet

tedious, to establish (Heffernan, 2000). Since the observations are independent and thus geometrically
β-mixing, Assumption 2 is satisfied by Remark 2. Finally, from Proposition 1 and results in Heffernan
(2000), Assumption 3 is met.315

Table 2 shows size and power of the Un-test for φ ∈ {0, 1/3} and η ∈ {1/2, 1}. Size is satisfactory
across all models, even for n = 500. As expected, power increases in sample size and proximity of the
break to the middle of the time series. Also, power increases the closer φ is to zero. This may be explained
by the confounding effects of serial dependence induced by a non-zero value of φ. Finally, the threefold
increase in limn→∞ p

(η)
n,i is more easily picked up when η = 1. This is also as expected, because when η320

is larger, more observations in the joint tail can be expected and thus, potentially, more evidence against
the null can be provided. Theorem 2 demonstrates this theoretically. Overall, our simulations demonstrate
good size of our test even for n = 500 and very satisfactory power for n = 2000. Consequently, the
method of choosing kn seems reasonable for different values of η.

4. A FINANCIAL CRISIS EXAMPLE325

We examine whether extremal dependence between S&P 500 and the DAX log-returns changed during
the financial crisis of 2007–8. The question is of obvious relevance to investors: spreading assets across
regions is beneficial to portfolios because of its diversifying effect and, as the saying has it, diversification
is the only free lunch in finance. If, however, asset prices start to co-move across asset classes or regions,
then a rebalancing of the portfolio may be required. This is called diversification meltdown (Campbell330

et al., 2008). The recent financial crisis played out over several years, so strong prior beliefs on the location
of a possible change point are hard to come by. Hence, a test for a change with an unknown location, as
developed in § 2, is required here. We analyse both upper and lower tail dependence separately and come
to similar conclusions.

We use log-returns calculated from adjusted daily closing prices from 2004 to 2011 of both indices,335

which are taken from finance.yahoo.com. We only keep those where data for both are available, leaving us
with a total of 1991 observations (X1, Y1)T, . . . , (X1991, Y1991)T. Figure 1 displays the two time series.
The scatter plots of the S&P 500 and DAX log-returns before and after the U.S. investment bank Lehman
Brothers filed for bankruptcy protection on 15 September 2008 are shown in panels (c) and (d). The date
is chosen somewhat arbitrarily, yet it was the largest bankruptcy by assets during the recent financial340

crisis and marked the beginning of the wildest swings in returns; see panels (a) and (b). Panel (c) clearly
shows mild clustering of extremes in the upper-right and lower-left quadrants. This is more pronounced
in panel (d), where both indices experience their largest and second largest returns on the same day. This
gives a first indication of a possible break in the extremal dependence structure.



A structural break test for extremal dependence 11

−0.10

−0.05

0.00

0.05

0.10

Lo
g−

re
tu

rn

2004 2005 2006 2007 2008 2009 2010 2011

Date

(a) S&P 500

−0.05

0.00

0.05

0.10

Lo
g−

re
tu

rn

2004 2005 2006 2007 2008 2009 2010 2011

Date

(b) DAX

−0.05 0.00 0.05 0.10

−0.05

0.00

0.05

0.10

S&P 500

D
A

X

(c)

−0.05 0.00 0.05 0.10

−0.05

0.00

0.05

0.10

S&P 500

D
A

X

(d)

Fig. 1. Plot of log-returns of S&P 500 in (a) and DAX in
(b). Scatter plots of DAX and S&P 500 log-returns before

and after 15 September 2008 in (c) and (d).

Comparing panels (c) and (d) also highlights the importance of allowing for dependent data in our test. 345

At first sight, it may appear that the marginal distributions of both the DAX and the S&P 500 returns have
changed after the Lehman crisis, due to an increase of large observations in both series. However, this
may just be due to dependence in volatility, that is still consistent with stationary marginal distributions,
as required by our test.

We check that our test may reasonably be applied. Conveniently, we do not have to discriminate between 350

asymptotic dependence/independence for this. We fit autoregressive moving average models with gener-
alized autoregressive conditionally heteroscedastic errors of different orders to both S&P 500 and DAX
log-returns. For each series, we determine the most suitable order using the Akaike information criterion.
The parameter estimates of the best fitting models indicate stationary returns. Moreoever, Ljung–Box tests
on the raw and squared standardized residuals reveal that no autocorrelation is left over, suggesting that 355

both series are well-described by these stationary time series models, such that time-invariant marginal
distributions appear plausible. As a check on this result we test for changes in the variance of the two time
series. Since there appears to be little variation in the mean, we simply test for changes in the mean of the
squared log-returns using the self-normalized test in Theorem 3.1 of Shao & Zhang (2010). Again, there
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Fig. 2. Plot of Un for log-returns (solid) and log-losses
(dashed). 5%- and 1%-critical values (dotted horizontal
lines). Vertical lines indicate choices of k∗n for log-returns

(solid) and log-losses (dashed).

is no evidence for a change in the marginal distribution, as the p-values are well above 0·1. Thus, we can360

be reasonably confident that there is no change in the marginal distribution, as required by our test.
Figure 2 plots the values of the test statistic Un for different values of kn for the log-returns and for the

positive log-losses of both series. The test statistic for the null of constant lower tail dependence is above
the 5%-critical value for all reasonable values of kn and in particular for k∗n = 334, which is the choice of
the algorithm from § 3. The test statistic for constant upper tail dependence yields even more significant365

results, with the test statistic well above the 1%-critical value, also for k∗n = 268. This is convincing
evidence for a break in the lower and in the upper tail dependence of the bivariate time series.

Four questions remain: first, in which direction was the break, i.e., are extremal co-movements more or
less likely after it? Second, when did it occur? Third, were there possibly more breaks? Fourth, can the
change in tail dependence be attributed to differences merely in p(η)n,i , or has there been a change in η?370

Figure 3 plots Gn(t) from (12) with η = 1 and provides some answers to the first three questions. The
particular value of η has no consequence for the following conclusions, since it just leads to a different
scaling of Gn(t). For both tests, Gn(t) is exclusively negative, so extremal dependence in the upper and
the lower tail of S&P 500 and DAX log-returns has likely intensified during the crisis, which is evidence
for diversification meltdown. The minimum of t 7→ Gn(t) is attained on 16 July 2008 for the solid line375

and 9 July 2007 for the dashed line. These dates indicate a break in the extremal dependence even before
the Lehman bankruptcy on 15 September 2008. Splitting the bivariate sample at both minima and testing
for another break in the upper and lower extremal dependence in the respective subsamples, we find no
evidence for additional breaks. Some further evidence for the presence of only one break comes from
applying the Tn-test of § 2·3. Unreported simulations show that this test has lower power than the Un-test380

under the one-break alternative. Indeed, applying the Tn-test to both the bivariate log-losses and log-
returns, with ε = 0·1 and k∗n’s as above, we only find evidence for a break in the upper tail dependence at
significance level 10%; the p-value of a test of constant lower tail dependence is above 0·1.

As for the fourth question, panels (c) and (d) in Fig. 1 suggest that before the crisis the returns may
have been tail independent with η < 1, only to become tail dependent with η = 1 afterwards. We split the385

sample at the minimum of Gn(t), i.e., 16 July 2008 for the upper joint tail and 9 July 2007 for the lower
joint tail. We use estimation and inference methods for η that, to the best of our knowledge, only exist
for serially independent data. Thus, the following conclusions must be interpreted with care. Estimates
of η based on the estimator in Coles et al. (1999, Sec. 3.3.2) suggest values of η of 0·71 and 0·66 for
the pre-break lower and upper tails, and values of 0·82 and 0·81 for the post-break period. The respective390

confidence intervals for η in the pre-/post-break periods do not include the post-/pre-break estimates.
This suggests a break in η. This conclusion is supported by the test of η = 1 in Reiss & Thomas (2007,
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Sec. 13.3). For both the upper and lower joint tail, the test rejects the null hypothesis of tail dependence in
the pre-crisis sample with p-values below 0·05 for a range of possible thresholds. For the post-crisis sample
however, tail dependence can no longer be rejected. For both break dates the number of observations either 395

side of the break is roughly equal, so that the non-rejection of η = 1 after the breaks is not due to a mere
lack of data.

Our results suggest one break in the coefficient of tail dependence given tail independence η somewhere
around the beginning of the crisis, after which extremal co-movements in the upper and lower joint tail of
both indices have become more frequent. 400
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SUPPLEMENTARY MATERIAL 405

Supplementary material available at Biometrika online includes proofs of the theoretical results and
simulations comparing our test with the test for correlation changes of Wied et al. (2012).
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AUE, A., HÖRMANN, S., HORVÁTH, L. & REIMHERR, M. (2009). Break detection in the covariance structure of
multivariate time series models. Ann. Statist. 37, 4046–4087. 410

BAE, K. H., KAROLYI, G. A. & STULZ, R. M. (2003). A new approach to measuring financial contagion. Rev.
Financ. Stud. 16, 717–763.
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