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Abstract

For a GARCH-type volatility model with covariates, we derive asymptotically valid forecast inter-

vals for risk measures, such as the Value-at-Risk and Expected Shortfall. To forecast these, we use

estimators from extreme value theory. In the volatility model, we allow for the inclusion of ex-

ogenous variables, e.g., volatility indices or high-frequency volatility measures. Our framework for

the volatility model captures leverage effects, thus allowing for sufficient flexibility in applications.

In simulations, we find coverage of the forecast intervals to be adequate. Finally, we investigate

if using covariate information from volatility indices or high-frequency data improves risk measure

forecasts for real data. While—in our framework—volatility indices appear to be helpful in this

regard, intra-day data are not.

Keywords: Extreme Value Theory, High-Frequency Volatility Measures, Risk Forecasts, Volatility

Indices, Volatility Models

JEL classification: C13 (Estimation), C14 (Semiparametric and Nonparametric Methods), C53

(Forecasting and Prediction Methods)

1 Motivation

Risk forecasts are central to financial institutions and regulators. Indeed, under the Basel accords,

banks have an incentive to issue prudent market risk forecasts that are neither too high nor too low.

If risk is forecast to be too low over some period of time, the regulator requires risk capital to be

increased under the Basel rules (Dańıelsson, 2011, Sec. 8.1.1). If, on the other hand, risk forecasts are

too high, the bank may internally decide to put more capital aside as a cushion against large losses.

In both cases, the additional capital buffer can no longer earn any premiums. To avoid this, adequate

risk forecasting models are of the utmost importance for both the profitability of individual financial

institutions and the stability of the whole financial system.

Based on past log-losses ε1, . . . , εn on some speculative asset, the aim in risk forecasting is to predict

next period’s risk inherent in εn+1 given the current state of the market, which is captured by some

information set Fn. Here, Fn may not only contain past observations, but also covariate information.

Many of the most popular risk forecasting methods rely on GARCH-type models. In this framework,

log-losses εt are modelled as εt = σtUt. Here, the volatility σt > 0 is assumed predictable from past

information in Ft−1. Furthermore, Ut is independent and identically distributed (i.i.d.) with zero

mean and unit variance (abbreviated Ut
i.i.d.∼ (0, 1)) and assumed to be independent from Ft−1. Under

the multiplicative structure of the model, the popular Value-at-Risk qα,n—defined as the α-quantile

of the conditional distribution function (d.f.) Fn(x) = P
{
εn+1 ≤ x | Fn

}
—is simply

qα,n = σn+1qα(U).
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Here, qα(U) denotes the α-quantile of a generic element U of the sequence {Ut}, and α is close to 1

to reflect large losses. Hence, to improve risk forecasts one can improve forecasts of volatility σn+1

and/or improve estimates of the risk inherent in the innovations, measured here by qα(U).

Volatility forecasts may be improved by incorporating additional information. For instance, An-

dersen et al. (2013) and Han and Kristensen (2014) list the following economic and financial variables

that have been used as covariates in the literature: interest rates, bid-ask spreads, information flow,

trading volumes, daily high–low ranges and numerous realized volatility measures; see also Shephard

and Sheppard (2010) and Hansen et al. (2012) for the latter. On the other hand, Kuester et al. (2006)

show that the estimation of qα(U) may be improved using extreme value theory (EVT) by exploit-

ing a Pareto-type tail shape for Ut. Such a Pareto-type assumption on the tail is often plausible in

empirical applications as it is satisfied by, e.g., the popular Student t-distribution. The idea in EVT

is to estimate a less extreme—and hence more easily estimated—quantile qβ(U) (β < α) first and

then extrapolate to the desired qα(U) using the Pareto-type tail. So while volatility forecasts may be

improved exploiting additional data, estimates of qα(U) may be improved by exploiting the available

data more efficiently. In this paper, we consider both possibilities jointly.

In the applied literature, several authors have recently proposed risk forecasting methods that

exploit both high-frequency information and EVT. For instance, Bee et al. (2016) filter the losses using

a volatility model based on high-frequency (HF) measures and then apply the Peaks-over-Threshold

method to the filtered residuals. Bee et al. (2019) suggest directly fitting a time-varying parameter

Generalized Pareto distribution to the losses above some high threshold, where the parameters vary

as functions of HF measures. Bee et al. (2018) propose a realized extreme quantile approach that

also exploits HF information, but combines EVT with quantile regression. However, as the theoretical

literature has not kept pace, little is known about the asymptotic properties of risk forecasts issued

from models combining HF measures and EVT. Even for the popular HEAVY model of Shephard

and Sheppard (2010) and the Realized GARCH model of Hansen et al. (2012), that both exploit HF

measures, asymptotic theory for risk forecasts is lacking.

Thus, it is the first main aim of this paper to derive forecast intervals for EVT-enhanced risk

forecasts issued from GARCH-type volatility models with covariates. The work to date by Chan et al.

(2007) and Hoga (2019a+) only covers GARCH and ARMA–GARCH models, which—in contrast

to our framework—do not allow for leverage effects, modelling of different powers of volatility, and

inclusion of covariates. So despite the empirical relevance, there is a lack of available asymptotic theory.

This may be explained by the scarce estimation theory available for covariate-augmented GARCH-
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type models.1 Some exceptions include the work of Han and Kristensen (2014) for GARCH–X(1, 1)

models and Francq and Thieu (2019) for APARCH–X(p, q) models. We build on the work of the latter,

because of the flexible volatility dynamics. In particular, the APARCH–X model captures the well-

known ‘leverage effect’, which allows a negative return to have a stronger impact on future volatility

than a positive return of equal magnitude. As a special case, our framework covers the GJR–GARCH

of Glosten et al. (1993) that Trapin (2018) finds particularly suitable to predict extreme events, which

we are also interested in here.

The second contribution of this article is to investigate if covariates improve extreme risk measure

forecasts in practice. While, as pointed out above, HF measures have been investigated in this context

by Bee et al., other exogenous variables have received less attention. For instance, Blair et al. (2001)

find the Chicago Board Options Exchange’s volatility index (VIX) to be more helpful for volatility

forecasting than HF measures. Hence, we extend Blair et al.’s (2001) comparison of HF measures

and volatility indices to the case of risk measure forecasting (instead of volatility forecasting) using

EVT-based methods. Investigating risk measure forecasts rather than volatility forecasts is of interest

because—under the current regulatory framework of the Basel Committee on Banking Supervision

(2019)—risk measures like the Value-at-Risk (VaR) and Expected Shortfall play a more central role

in risk management than volatility.

We consider forecasts of the following risk measures. First, we deal with extreme distortion risk

measures (DRMs) introduced by El Methni and Stupfler (2017). This is a general class of quantile-

based risk measures, covering the popular VaR and Expected Shortfall (see El Methni and Stupfler,

2017, Table 1). Second, we also study expectiles due to Newey and Powell (1987). Expectiles possess

some appealing theoretical properties. For instance, Ziegel (2016) demonstrates that they are the

only law-invariant risk measures that are both elicitable and coherent. Elicitability allows for sensible

comparisons of different forecasts (Gneiting, 2011). A coherent risk measure satisfies the four axioms

of translation invariance, subadditivity, positive homogeneity and monotonicity introduced by Artzner

et al. (1999). Bellini and Di Bernardino (2017) and Daouia et al. (2018) provide excellent motivation

for the use of expectiles in risk management.

The remainder of the article is organized as follows. Within our APARCH–X framework, Section 2

derives asymptotically valid interval forecasts for extreme risk. Monte Carlo simulations in Section 3

illustrate the good coverage of the forecast intervals. Section 4 explores the usefulness of covariate

information—from volatility indices and high-frequency data—in risk forecasting. Finally, Section 5

concludes. Proofs are relegated to an Appendix.

1For instance, despite the popularity of HEAVY and Realized GARCH models, little is known even about the asymp-
totic properties of their parameter estimators.
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2 Asymptotic Forecast Intervals

Subsection 2.1 introduces the APARCH–X model and the main assumptions that will be used through-

out. Then, Subsection 2.2 presents the EVT-based risk forecasts issued from APARCH–X models.

Finally, in Subsection 2.3 we derive the asymptotic forecast intervals for the extreme risk measures.

2.1 The APARCH–X Model

Let δ◦ > 0. The model assumed to be driving the log-losses εt in the following is given by

εt = σtUt, (1)

σδ
◦
t = ω◦ +

p∑
j=1

{
α◦+,j(εt−j)

δ◦
+ + α◦−,j(εt−j)

δ◦
−

}
+

q∑
j=1

β◦j σ
δ◦
t−j + (π◦)′xt−1, (2)

where x+ = max{x, 0}, x− = max{−x, 0}, and xt = (x1,t, . . . , xM,t)
′ is a vector of M exogenous

covariates with coefficients π◦ = (π◦1, . . . , π
◦
M )′. To enforce σδ

◦
t > 0, we assume positive covariates,

ω◦ > 0, and non-negative coefficients α◦+,j , α
◦
−,j , β

◦
j and π◦j .

For π◦ = 0, when no covariates are present, this model nests several well-known GARCH variants.

For general δ◦ > 0, the model reduces to the Asymmetric Power GARCH (APARCH) of Ding et al.

(1993). Hence, Francq and Thieu (2019) call the above the APARCH–X(p, q) model. We obtain

Zaköıan’s (1994) TARCH model for δ◦ = 1 and the GJR–GARCH of Glosten et al. (1993) for δ◦ = 2.

When δ◦ = 2 and α◦+,j = α◦−,j , (2) is the classic GARCH model of Bollerslev (1986).

In the remainder of the paper, we follow Francq and Thieu (2019) and assume δ◦ to be a fixed

user-specified constant. Francq and Thieu (2019, Sec. 2.5) provide some theoretically-backed guidance

on the choice of δ◦ in practice. Since δ◦ is fixed, a generic parameter vector from the parameter space

Θ ⊂ (0,∞)× [0,∞)d−1 (d = 2p+ q +M + 1) will be denoted by

θ = (ω, α+,1, . . . , α+,p, α−,1, . . . , α−,p, β1, . . . , βq, π1, . . . , πM )′.

We denote the true parameter vector by θ◦ = (ω◦, α◦+,1, . . . , α
◦
+,p, α

◦
−,1, . . . , α

◦
−,p, β

◦
1 , . . . , β

◦
q , π
◦
1, . . . , π

◦
M )′.

The most comprehensive estimation theory for APARCH–X models has been developed by Francq

and Thieu (2019). Denote by ε1, . . . , εn a trajectory from the APARCH–X model, and let x1, . . . ,xn

denote the exogenous variables. Then, for initial values ε1−p = . . . = ε0 = 0 and ĥ1−q = . . . = ĥ0 = 0

and x0 = 0, the Gaussian quasi-likelihood is

Ln(θ) = Ln(θ, ε1, . . . , εn,x1, . . . ,xn) =

n∏
t=1

1√
2πĥ

2/δ◦

t

exp

{
− ε2

t

2ĥ
2/δ◦

t

}
,
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where

ĥt = ĥt(θ) = ω +

p∑
j=1

{
α+,j(εt−j)

δ◦
+ + α−,j(εt−j)

δ◦
−

}
+

q∑
j=1

βj ĥt−j + π′xt−1, t ≥ 1.

The quasi-maximum likelihood estimator (QMLE) of θ◦ is θ̂n = arg maxθ∈Θ Ln(θ). We now state the

main assumptions that Francq and Thieu (2019) require to derive limit theory for θ̂n.

(C1) (Ut,x
′
t) is a strictly stationary and ergodic process, and there exists s > 0 such that E‖x1‖s <∞,

where ‖·‖ denotes the Euclidean norm.

(C2) Ut
i.i.d.∼ (0, 1) with Ut independent from Ft−1, where Ft−1 is the σ-field generated by {εt−i,xt−i, i ≥

1}, i.e., Ft−1 = σ(εt−i,xt−i, i ≥ 1).

(C3) θ◦ ∈ Θ, where Θ is compact, and all components of θ◦ are strictly positive.

(C4) For all i ≥ 1 and t ∈ Z, the support of the distribution of ηt−i given Ft,i = σ(Ut−j , j > i,xt−k, k >

0) is not included in [0,∞) or in (−∞, 0] and contains at least three points.

(C5) The top Lyapunov exponent γ (Francq and Thieu, 2019, p. 41) satisfies γ < 0 and
∑q

j=1 βj < 1

for all θ ∈ Θ.

(C6) If q > 0, Bθ◦(z) = 1 −
∑q

j=1 β
◦
j z
j has no common roots with Aθ◦,+(z) =

∑p
j=1 α

◦
+,jz

j and

Aθ◦,−(z) =
∑p

j=1 α
◦
−,jz

j ; Aθ◦,+(1) +Aθ◦,−(1) 6= 0 and α◦+,p + α◦−,p + β◦q 6= 0 (with the notation

α◦+,0 = α◦−,0 = β◦0 = 1).

(C7) If c ∈ RM \ {0}, then the distribution of c′x1 is not degenerated.

Conditions (C1)–(C7) are sufficient for the almost sure consistency of the QMLE θ̂n (Francq and

Thieu, 2019, Theorem 1). Note that we do not require Francq and Thieu’s (2019) condition A6, since

we assume the Ut to be i.i.d. (Francq and Thieu, 2019, Lemma 2). To derive the asymptotic normality

of θ̂n, the following further conditions are required.

(C8) C = ∪∞n=1

{√
n(θ − θ◦) : θ ∈ Θ

}
=
∏d
i=1 Ci, where Ci = [0,∞) when the i-th component of θ

is equal to zero, and Ci = R otherwise.

(C9) E |Ut|4 <∞.

Under conditions (C1)–(C9), Francq and Thieu (2019, Theorem 2) prove the asymptotic normal-

ity of the QMLE. For discussion of the technical conditions (C1)–(C9), we refer to Francq and Thieu

(2019).
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2.2 Risk Measure Forecasting in APARCH–X Models

We now introduce risk measure forecasts from APARCH–X models that use extreme value theory.

Suppose that today you have a sample ε1, . . . , εn of log-losses and a sample of covariates x1, . . . ,xn.

Then, Fn = σ(εn, εn−1, . . . ;xn,xn−1, . . .)—defined in (C2)—captures the current market conditions.

The task in risk forecasting is to forecast risk inherent in tomorrow’s realization εn+1 given today’s

state of the market, embodied by Fn. Formally, this risk (e.g., ξα,n or DRMα,n defined below) is a

scalar derived from the conditional d.f. Fn(·) = P
{
εn+1 ≤ · | Fn

}
.

First, we introduce the risk measures covered by our analysis, viz. expectiles and distortion risk

measures. Following Newey and Powell (1987, p. 824), the conditional expectile is

ξα,n := arg min
x∈R

E[ηα(εn+1 − x) | Fn], (3)

where ηα(x) = |α− I{x≤0}| · |x|2. Define qα,n as the α-quantile of Fn(·). Then, the conditional extreme

distortion risk measure (DRM) is given by

DRMα,n :=

∫ 1

0
q1−(1−α)s,n dg(s), (4)

where g(·) is a distortion function, i.e., a non-decreasing and right-continuous function with g(0) = 0

and g(1) = 1. This representation nests several well-known risk measures, such as the VaR at level α,

qα,n (for g(x) = I{x=1}), and the Expected Shortfall at level α, ESα,n = 1
1−α

∫ 1
α qx,n dx (for g(x) = x).

Under the multiplicative structure of the APARCH–X model in (1) and (2), the expressions in (3)

and (4) simplify due to the location–scale equivariance of DRMs and expectiles. Specifically, Hoga

(2019+) shows that

ξα,n = σn+1ξα(U), (5)

DRMα,n = σn+1 DRMα(U), (6)

where ξα(U) = arg minx E[ηα(U1 − x)] (DRMα(U) =
∫ 1

0 q1−(1−α)s(U) dg(s)) is the unconditional ex-

pectile (DRM) associated with U . Obviously, both ξα,n and DRMα,n are random variables, since

volatility σn+1 is stochastic.

Clearly, σn+1 in (5) and (6) can be forecast easily via ĥ
1/δ◦

n+1 (θ̂n). To estimate the remaining terms

ξα(U) and DRMα(U), we require two sequences kn and αn (cf. (C10)) and an assumption on the tail

decay of the Ut (cf. (C11)):

(C10) The sequence kn tends to ∞ with kn/n
1−ι → 0, as n → ∞, for some ι > 0. Further, αn → 1

with n(1− αn)→ c > 0, as n→∞.
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(C11) The (1 − 1/x)-quantile U(x) of a generic element U of {Ut} satisfies the following: There exist

γ > 0, ρ < 0 and a function A(·) with limt→∞A(t) = 0 and constant sign, such that

lim
t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
for all x > 0.

Additionally, A(·) satisfies
√
kA(n/kn) −→

(n→∞)
0. The parameter γ is called the extreme value

index and ρ is the second-order parameter.

Remark 1. (i) Following standard convention in EVT, we shall suppress the subindex of kn in

(C10) and simply write k. The sequence αn in (C10) represents the probability level at which

the risk measures are evaluated subsequently. This probability level is extreme in the sense that

it converges to 1 as the sample size increases.

(ii) Assumption (C11) is popular in EVT and controls the speed of convergence to a Pareto tail in

lim
t→∞

U(tx)

U(t)
= xγ . (7)

Since (7) even holds without the limit for a Pareto distribution, the innovations may be said

to possess Pareto-type tails. The larger the extreme value index γ, the heavier the tail. Fur-

thermore, the smaller the second-order parameter ρ < 0 in (C11), the faster A(t) converges to

0, since |A(·)| is necessarily regularly varying with index ρ (de Haan and Ferreira, 2006, Theo-

rem 2.3.3). So the more negative ρ, the faster the speed of convergence in (7) and, hence, the

better the Pareto approximation.

A key ingredient for the estimators of ξαn = ξαn(U) and DRMαn = DRMαn(U) is the Weissman

(1978) estimate of the quantile qαn = qαn(U). Since the innovations Ut are unobserved, we work with

the standardized residuals Ût := εt/ĥ
1/δ◦

t (θ̂n). Denote the order statistics by Û(1) ≥ . . . ≥ Û(n). The

Weissman (1978) estimator q̂αn is based on the insight that qαn relates to the less extreme—and hence

more easily estimated—q1−k/n ((1− k/n) < αn) as follows:

qαn ≈
(

k

n(1− αn)

)γ
q1−k/n ≈

(
k

n(1− αn)

)γ̂
Û(k+1) =: q̂αn . (8)

Here, we have used the approximation U(tx)/U(t) ≈ xγ from (7) for t = n/k and x = k/(n[1− αn]).

Furthermore, γ̂ in (8) denotes the Hill (1975) estimator

γ̂ =
1

k

k∑
i=1

log
(
Û(i)/Û(k+1)

)
.

Under (7), expectiles and DRMs decay with similar speed as quantiles far out in the tail. More pre-

cisely, El Methni and Stupfler (2017, Lemma 3) and Bellini and Di Bernardino (2017, Proposition 2.3)
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show for extreme DRMs and expectiles, respectively, that under (7)

DRMαn

qαn
−→

(n→∞)

∫ 1

0
s−γ dg(s), if

∫ 1

0
s−γ−ι dg(s) <∞ for some ι > 0,

ξαn
qαn

−→
(n→∞)

(γ−1 − 1)−γ , if γ ∈ (0, 1).

These relations motivate the plug-in estimators

D̂RMαn :=

∫ 1

0
s−γ̂ dg(s)q̂αn , (9)

ξ̂αn :=
(
γ̂−1 − 1

)−γ̂
q̂αn . (10)

El Methni and Stupfler (2017) and Daouia et al. (2018) study these estimators for i.i.d. data. Finally,

our forecasts of DRMαn,n and ξαn,n are given by

ξ̂αn,n = ĥ
1/δ◦

n+1 (θ̂n)ξ̂αn ,

D̂RMαn,n = ĥ
1/δ◦

n+1 (θ̂n)D̂RMαn .

2.3 Forecast Intervals for Risk Measures

Our main theoretical result is the following

Theorem 1. Suppose Conditions (C1)–(C11) hold for the APARCH–X process {εt} defined in (1)

and (2). Then,

(i) if
∫ 1

0 s
−γ−1/2−ν dg(s) < ∞ for some ν > 0 and δ 7→ qδ(U) is continuous and strictly increasing

in a neighbourhood of 1,

1

γ̂

√
k

log{k/(n[1− αn])}
log

(
D̂RMαn,n

DRMαn,n

)
d−→

(n→∞)
N(0, 1); (11)

(ii) if δ 7→ qδ(U) is strictly increasing,

1

γ̂

√
k

log{k/(n[1− αn])}
log

(
ξ̂αn,n
ξαn,n

)
d−→

(n→∞)
N(0, 1). (12)

The convergences in (11) and (12) imply the asymptotic (1 − τ)-confidence forecast interval for

zαn,n (z ∈ {DRM, ξ}):

I1−τ :=

[
ẑαn,n exp

{
−Φ−1

1− τ
2
γ̂

log{k/(n[1− αn])}√
k

}
, ẑαn,n exp

{
Φ−1

1− τ
2
γ̂

log{k/(n[1− αn])}√
k

}]
,

where Φ−1
1− τ

2
denotes the (1− τ/2)-quantile of a standard normal random variable.

In practice, the choice of k is difficult since it is only specified asymptotically. Dańıelsson et al.

(2016) suggest to choose k, such that the largest distance between a fitted Pareto-type tail and the
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empirical quantiles is minimized. To introduce the method, consider the following two estimators

of the (1 − j/n)-quantile U(n/j). First, U(n/j) may simply be estimated by the empirical quantile

Û(j+1). Second, by similar arguments that led to (8),

U

(
n

j

)
≈ Û(k+1)

(
j

k

)−γ̂
=: q(j, k). (13)

Now, for an adequate choice of k the absolute deviation between the semi-parametric estimate q(j, k)

and the non-parametric estimate Û(j+1) should be small for a range of j’s. This motivates the data-

adaptive choice

k∗ := arg min
k=kmin,...,kmax

[
sup

j=1,...,kmax

∣∣∣Û(j+1) − q(j, k)
∣∣∣] , (14)

where we choose kmin = b(log n)2c and kmax = b4(log n)2c.2 As the method of Dańıelsson et al. (2016)

is based on quantiles, it is well-suited for the DRM and expectile estimators in (9) and (10) that are

both based on quantile estimates. We investigate the choice k∗ in the simulations and the empirical

application.

3 Simulations

We now compare the finite-sample coverage of the asymptotic 90%-confidence forecast intervals I0.9

for VaR, Expected Shortfall and expectiles of time series with length n ∈ {1000, 2000}. Also, we

compute the bias and RMSE of the risk measure forecasts. We do so using the data-dependent choice

of k in (14). All simulation results are based on 10,000 replications. We use R version 3.5.2 (R Core

Team, 2018).

We generate time series {εt}t=−v+1,...,n from the APARCH–X(1,1) model with δ◦ = 1 given by

εt = σtUt,

σt = ω◦ + α◦+,1(εt−1)+ + α◦−,1(εt−1)− + β◦σt−1 + π◦1xt−1, (15)

with θ◦ = (ω◦, α◦+,1, α
◦
−,1, β

◦
1 , π
◦
1)′ = (0.046, 0.027, 0.092, 0.843, 0.089)′ and

xt = exp(yt), yt = 0.8 · yt−1 + et,

where et
i.i.d.∼ N(0, 1). This data-generating process is taken from Francq and Thieu (2019, Sec. 3.1).

However, unlike Francq and Thieu (2019), we assume Ut to be heavy-tailed. More precisely, we

consider Ut ∼ tν
√

(ν − 2)/ν with ν = 5. For this standardized t-distribution, the parameters in

(C11) satisfy γ = 1/ν and ρ = −2/ν by Hua and Joe (2011, Example 3) and de Haan and Ferreira

2The choice of kmin and kmax is motivated by Chan et al. (2007), who use a fixed k = b1.5(logn)2c.
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(2006, Theorem 2.3.9). We also use Ut ∼ RtBt/
√

E[B2
t ], where Rt is i.i.d. Rademacher (i.e., ±1 with

equal probability 1/2), independent from the i.i.d. Burr(a = 1, b = 5)-distributed Bt. The Burr(a, b)-

distribution has d.f.

1− F (x) =

(
1

1 + xb

)a
, x, a, b > 0.

From Hua and Joe (2011, Example 2) and de Haan and Ferreira (2006, Theorem 2.3.9), we obtain for

the Burr(a, b)-distribution that γ = 1/(ab) and ρ = −1/a in (C11).

Note that Ut
i.i.d.∼ (0, 1) for both the Student t and the Burr distribution. Also, γ = 1/5 for our

parameter choices in both cases. This implies in particular that E |Ut|4 < ∞, as required by (C9).

We estimate the APARCH–X(1,1) model via the QMLE θ̂n using the rugarch package (Ghalanos,

2019).

We consider three risk measures. As special cases of distortion risk measures, we investigate the

two most popular risk measures, viz. VaR and Expected Shortfall. The third risk measure we use are

expectiles. Since volatility estimates ĥ
1/δ◦

t (θ̂n) may be imprecise for the first few t due to initialization

effects (see also Hall and Yao, 2003), we discard the first v = 10 standardized residuals and only

consider {Ût = εt/ĥ
1/δ◦

t (θ̂n)}t=1,...,n for estimating zαn (z ∈ {q, ES, ξ}).3

Table 1 displays the results. We draw the following conclusions:

1. Bias and RMSE: For all risk forecasts, bias and RMSE decrease in n. As expected, the RMSEs

increase the larger αn, i.e., the more extreme the risk measure. Further, for the Burr-distribution

the bias is lower than for the t-distribution. This is because the second-order parameter for the

Burr-distribution (ρ = −1) is smaller than the second-order parameter for the t5-distribution

(ρ = −2/5). Hence, the Pareto approximation is more accurate for the former distribution and

less bias is incurred by extrapolation.

2. Coverage: Coverage of the 90%-confidence intervals improves the larger the sample size n.

Furthermore, coverage improves the closer αn is to 1. This reflects the fact that by (C11)

n(1−αn)→ c > 0 is required for the asymptotic analysis. Overall, the interval forecasts, partic-

ularly those for ES, suffer from some undercoverage. This may be explained by the fact that the

confidence intervals do not take into account the estimation uncertainty of the parameter vector

θ◦, which can be estimated with
√
n-rate. Hence, asymptotically the

√
k/ log{k/(n[1−αn])}-rate

of the estimators ξ̂αn and D̂RMαn dominates; cf. the proof of Theorem 1. Nonetheless, in finite

samples, the estimation effects of θ◦ certainly contribute to the estimation uncertainty of the

risk forecasts.

3Recall that we generate time series {εt}t=−v+1,...,n. Hence, discarding the first v residuals, leaves us with {Ût}t=1,...,n.
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n Ui k∗/n z 1− αn Bias RMSE Coverage Length

1000 t 5.5% q 1% −0.03 3.30 71.6 2.78
0.5% 0.32 4.35 82.8 4.91
0.1% 2.61 9.61 89.8 14.0

ES 1% 1.13 5.89 60.7 4.10
0.5% 2.17 8.42 68.6 7.27
0.1% 6.95 20.0 72.6 20.9

ξ 1% 0.36 2.90 69.0 2.21
0.5% 0.70 4.01 78.5 3.91
0.1% 2.72 9.38 84.8 11.2

Burr 7.5% q 1% 0.02 2.91 70.6 1.62
0.5% 0.05 3.36 77.6 2.56
0.1% 0.20 5.20 85.4 5.90

ES 1% 0.10 3.81 61.0 2.06
0.5% 0.17 4.64 69.2 3.27
0.1% 0.46 7.99 79.3 7.57

ξ 1% 0.08 2.31 72.0 1.23
0.5% 0.09 2.68 78.8 1.95
0.1% 0.20 4.28 85.9 4.51

2000 t 3.5% q 0.5% 0.05 3.73 74.7 3.18
0.1% 1.35 7.46 88.2 9.42

0.05% 2.50 10.5 89.5 13.8

ES 0.5% 1.12 6.51 64.9 4.50
0.1% 3.98 14.5 76.2 13.4

0.05% 6.13 20.7 76.9 19.8

ξ 0.5% 0.33 3.19 73.0 2.47
0.1% 1.43 6.82 85.5 7.36

0.05% 2.38 9.73 86.8 10.8

Burr 5% q 0.5% 0.01 2.44 73.4 1.79
0.1% 0.04 3.83 83.3 4.40

0.05% 0.08 4.73 85.6 6.03

ES 0.5% 0.04 3.38 63.9 2.27
0.1% 0.14 5.59 76.4 5.57

0.05% 0.21 7.05 79.3 7.65

ξ 0.5% 0.05 1.87 75.0 1.36
0.1% 0.06 2.97 84.2 3.35

0.05% 0.10 3.71 86.4 4.59

Table 1: Average values over all replications of k∗, bias, RMSE, coverage and interval lengths of
asymptotic 90%-confidence intervals.

3. Interval length: The lengths of the interval forecasts decrease in n for a fixed probability level

αn. For fixed n, the length increases the closer αn is to 1. This simply reflects that there is more
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estimation uncertainty for more extreme risk forecasts.

In view of the coverage reported by Chan et al. (2007) for their GARCH-based VaR forecast

intervals, we find the coverage frequencies in Table 1 to be satisfactory. The fact that undercoverage

is most severe for ES may be explained as follows. Since ES is an average over quantiles above VaR,

ES is more extreme than VaR evaluated at the same risk level. Hence, the estimation uncertainty in

ES forecasts and ES forecast intervals is increased. Hoga (2019a+) finds considering interval forecasts

based on self-normalization may improve coverage. Considering these is however beyond the scope of

this paper.

4 The Use of Covariates in Applied Risk Forecasting

One main innovation of the asymptotic theory developed in Section 2 is that covariate information

can be incorporated into EVT-based risk forecasts. So it is of interest to investigate whether including

covariates in EVT-based forecasts leads to improvements. In Subsection 4.1, we explore if option-

implied expectations of future volatility help in risk forecasting for returns on major US stock indices.

Then, Subsection 4.2 examines this for high-frequency measures derived from intra-day data. Our

choice of covariates is inspired by Blair et al. (2001) and Koopman et al. (2005).

However, unlike Blair et al. (2001) and Koopman et al. (2005) who compare volatility forecasts, we

compare risk forecasts. As can be seen from (5) and (6), volatility forecasts are just one component

of a risk forecast. The other component is an estimate of the risk in Ut. It is this part of the risk

forecasting method that we additionally account for in our comparison. Since, as pointed out above,

risk forecasts are of more direct interest than volatility forecasts, we argue that the evaluation of the

former is more informative about the quality of the risk forecasting methodology than the evaluation

of the latter. Additionally, and in line with a large part of the volatility forecasting literature, Blair

et al. (2001) and Koopman et al. (2005) require a (inherently noisy) volatility proxy. In contrast, we do

not require a proxy for volatility, as we rely on scoring functions to compare risk forecasts (Gneiting,

2011).

In this section, we compare point forecasts of risk. These point forecasts are consistent for the true

risk under the data-generating processes (DGPs) covered by Theorem 1. We expect these DGPs to

provide reasonable approximations to the true dynamic of the index returns. Ideally, we would have

compared different forecast intervals (derived from the asymptotic normality result in Theorem 1)

instead of point forecasts, as the former are more informative. However, to the best of our knowledge,

there exists no suitable scoring (or also: loss) function to compare forecast intervals for the risk mea-
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sures considered here; see also Askanazi et al. (2018) for more on the general difficulties of comparing

interval predictions. Hence, we stick to the task of evaluating point forecasts for which well-known

scoring functions exist.

4.1 Volatility Indices as Covariates

Roughly speaking, volatility forecasts can be produced from time series models and option-implied

standard deviations. The former typically only rely on the asset’s own price history, whereas the

latter are based on the broader information set of market participants’ expectations. In their review

of volatility forecasting, Poon and Granger (2003) find that methods exploiting option-implied infor-

mation often compare favourably with time series methods. APARCH–X models allow to combine

both methods by using option-implied volatility as a covariate. Here, we investigate whether including

the value of a volatility index (derived from option prices) as covariate improves risk forecasts for the

underlying index.

More specifically, we consider log-losses {ε1, . . . , εN} on the S&P 500, NASDAQ, Russell 2000

and Dow Jones Industrial Average (DJIA) indices from 1/1/2004–12/31/2018.4 As covariates, we

employ the Chicago Board Options Exchange’s (CBOE) volatility indices on the S&P 500, NASDAQ,

Russell 2000 and DJIA, respectively.5 We denote these univariate time series by {x1, . . . , xN}. For

details on how these volatility indices are computed from option prices, we refer to the CBOE’s website

at www.cboe.com.

To explore whether inclusion of the volatility indices improves risk forecasts, we fit an APARCH–

X(1,1) model with δ◦ = 1—as in (15)—with and without the constraint π◦1 = 0, i.e., with and

without covariates.6 We do so based on the sample {ε1, . . . , εn} (n ∈ {1010, 2010}) and proceed as

described in Section 3, taking v = 10, to obtain risk forecasts ẑAP
αn,n and ẑAP–X

αn,n (z ∈ {q, ES, ξ})

from the APARCH and APARCH–X model, respectively. We repeat this procedure by rolling a

moving window {εj−n+1, . . . , εj}j=n,...,N−1 through the sample. This generates one set of risk forecasts

{ẑ(j),AP–X
αn,n }j=n,...,N−1 exploiting option-implied information and another set {ẑ(j),AP

αn,n }j=n,...,N−1 that

does not. In each case, ẑ
(j),AP–X
αn,n and ẑ

(j),AP
αn,n forecast the risk inherent in εj+1 based on past observations

εj−n+1, . . . , εj (and covariates xj−n+1, . . . , xj).

To compare the two sets of forecasts, we use scoring functions (Gneiting, 2011). We compute the

4The data have been taken from quotes.wsj.com (ticker symbols: SPX, NDX, RUT and DJIA).
5The data have neen taken from www.cboe.com/products/vix-index-volatility/volatility-indexes (ticker symbols: VIX,

VXN, RVX and VXD).
6Francq and Thieu (2019) find δ◦ = 1 to deliver the best description of S&P 500 volatility dynamics. For simplicity,

we also use this choice for the other indices—NASDAQ, Russell 2000, and DJIA.
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average scores based on the forecasts ẑ
(j),AP–X
αn,n , ẑ

(j),AP
αn,n and verifying observations εj+1

S
AP–X
z,αn =

1

N − n

N−1∑
j=n

Sz,αn(ẑ(j),AP–X
αn,n , εj+1) and S

AP
z,αn =

1

N − n

N−1∑
j=n

Sz,αn(ẑ(j),AP
αn,n , εj+1) (16)

based on the scoring functions

Sz,α(x, y) =

(1− α− I{x<y})(x− y), if z = q;

|1− α− I{x<y}|(x− y)2, if z = ξ.

Gneiting (2011) shows that these scoring functions are suitable in the sense of being strictly consistent.

Recall that scoring functions are negatively oriented, so that lower scores are preferable. Since ES is

not elicitable (Gneiting, 2011, Theorem 11), there exists no suitable scoring function. However, ES is

jointly elicitable with VaR (Fissler and Ziegel, 2016). We use the scoring function

SES,α(xV , xE , y) =
[
1− α− I{xV <y}

]
[xV − y] +

1

1− α
G2(xE)I{xV <y} [y − xV ]

−G2(xE)[xE − xV ] +
[
G2(xE)− G2(y)

]
for the pair (VaR, ES), where G2(x) = ex/[1 + ex] and G′2 = G2, i.e., G2(x) = log(1 + ex) (Nolde and

Ziegel, 2017; Ziegel et al., 2019). The average scores S
AP–X
ES,αn and S

AP
ES,αn for ES (jointly with VaR) are

then calculated as in (16). As is common, all scoring functions are normalized to satisfy Sz,α(y, y) = 0

(z ∈ {DRM, ξ}) and SES,α(y, y, y) = 0.

Table 2 compares the ratios S
AP
z,αn/S

AP–X
z,αn (z ∈ {q, ES, ξ}) of the average scores for different

sample sizes n ∈ {1010, 2010} and probability levels 1−αn. Since lower scores are better, score ratios

above 1 indicate improved risk forecasts using covariate information. We use a standard Diebold and

Mariano (1995) test to detect statistically significant differences in average scores. Consistent with

Blair et al. (2001), we find that across almost all indices and risk measures, including the respective

volatility indices as covariates in the model improves risk forecasts. The larger the sample size, the

larger the improvements in terms of both score differences and statistical significance. This may be

explained as follows. More observations lead to less noise in estimating the additional parameter π◦1 in

the APARCH–X model and, hence, the advantage of the additional covariate can emerge more clearly.

We also generate a third set of risk forecasts by proceeding as before, except that now we fit

a benchmark GARCH(1,1) model to the returns. The corresponding average score is denoted by

S
G
z,αn and we report the score ratios S

G
z,αn/S

AP
z,αn in Table 3. We do so for two reasons. First, we

want to examine the benefit of modeling different powers and asymmetry—allowed in our framework,

but not in that of Chan et al. (2007) and Hoga (2019a+)—in risk forecasting. In other words, we

want to examine the advantages of the APARCH specification (without covariates) over a GARCH
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z n 1− αn S&P 500 NASDAQ Russell 2000 DJIA

q 1010 1% 1.069∗ 1.010 1.030∗ 1.037
0.5% 1.089 0.976 1.053∗∗ 1.082
0.1% 1.031∗∗∗ 0.999 1.053∗∗∗ 1.092

2010 0.5% 1.156∗∗∗ 1.069∗∗∗ 1.087∗∗∗ 1.059∗∗

0.1% 1.168∗∗∗ 1.131∗∗∗ 1.134∗∗∗ 1.074∗∗∗

0.05% 1.183∗∗∗ 1.140∗∗∗ 1.146∗∗∗ 1.048∗∗∗

ES 1010 1% 1.069∗ 1.010 1.030∗ 1.037
0.5% 1.088 0.976 1.053∗∗ 1.080
0.1% 1.032∗∗∗ 1.000 1.052∗∗∗ 1.090

2010 0.5% 1.155∗∗∗ 1.069∗∗∗ 1.087∗∗∗ 1.059∗∗

0.1% 1.167∗∗∗ 1.130∗∗∗ 1.133∗∗∗ 1.073∗∗∗

0.05% 1.181∗∗∗ 1.138∗∗∗ 1.145∗∗∗ 1.047∗∗∗

ξ 1010 1% 1.048 1.003 1.035 1.063
0.5% 1.094 0.988 1.047∗ 1.103
0.1% 1.083 0.926∗∗∗ 1.085∗∗∗ 1.089

2010 0.5% 1.141∗∗∗ 1.055∗∗ 1.080∗∗ 1.094∗∗∗

0.1% 1.307∗∗∗ 1.163∗∗∗ 1.207∗∗∗ 1.106∗∗∗

0.05% 1.351∗∗∗ 1.203∗∗∗ 1.249∗∗∗ 1.122∗∗∗

Table 2: Score ratios S
AP
z,αn/S

AP–X
z,αn (z ∈ {q,ES, ξ}) for forecasts based on n observations and volatility

indices as covariates. Significantly different average scores at the 10%/5%/1%-level are indicated by
a */**/***.

specification. Second, comparing S
G
z,αn/S

AP
z,αn with the ratios S

AP
z,αn/S

AP–X
z,αn gives us a better sense of

the latter’s magnitudes reported in Table 2. As expected, Table 3 shows that the leverage effect and

modelling of volatility itself (instead of its square) quite generally lead to superior risk forecasts. Except

perhaps for the Russell 2000, the incremental risk forecasting improvements of including volatility

indices in the APARCH specification are roughly equally large as those of allowing for modelling

different powers and asymmetry in the GARCH specification. Thus, including covariates may be as

important for risk forecasting as allowing for the well-established stylized facts of asymmetry and

strong autocorrelation in absolute returns.

4.2 Realized Volatility Measures as Covariates

For ease of comparison with the previous subsection, we again consider the S&P 500, NASDAQ,

Russell 2000 and DJIA during the time period 1/1/2004–12/31/2018. As a covariate, we use the

median realized variance (MedRV) based on 5-minute intra-day returns.7 MedRV was proposed by

Andersen et al. (2012) as a jump-robust measure of integrated variance. We take the square root of

7All data have been taken from the realized library of Heber et al. (2009), available at realized.oxford-man.ox.ac.uk.
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z n 1− αn S&P 500 NASDAQ Russell 2000 DJIA

q 1010 1% 1.075∗ 1.081∗∗ 1.036 1.075∗∗

0.5% 1.058 1.094∗∗∗ 1.017 1.033
0.1% 1.088∗∗∗ 1.100∗∗∗ 1.015 1.019

2010 1% 1.051 1.083 0.989 1.026
0.5% 1.046 1.106∗∗ 0.940∗∗∗ 1.090
0.1% 1.004 1.167 0.923∗∗∗ 1.111∗∗∗

ES 1010 1% 1.077∗ 1.082∗∗ 1.037 1.076∗∗

0.5% 1.059 1.095∗∗∗ 1.017 1.034
0.1% 1.090∗∗∗ 1.101∗∗∗ 1.015 1.019

2010 0.5% 1.052 1.084 0.990 1.026
0.1% 1.046 1.106∗∗ 0.939∗∗∗ 1.090
0.05% 1.004 1.168 0.922∗∗∗ 1.111∗∗∗

ξ 1010 1% 1.134∗∗ 1.134∗∗∗ 1.070∗∗ 1.126∗

0.5% 1.132∗ 1.156∗∗∗ 1.065∗ 1.121
0.1% 1.115 1.173∗∗∗ 1.044 1.069

2010 0.5% 1.098 1.182∗ 1.027 1.097∗

0.1% 1.015 1.150∗∗ 0.910∗∗ 1.102∗

0.05% 0.986 1.132∗∗ 0.851∗∗∗ 1.137∗∗∗

Table 3: Score ratios S
G
z,αn/S

AP
z,αn (z ∈ {q,ES, ξ}) for forecasts based on n observations. Significantly

different average scores at the 10%/5%/1%-level are indicated by a */**/***.

MedRV for it to be in the same unit of measurement as εt−j in (2) (recall that we take δ◦ = 1) and

denote the resulting time series by {x1, . . . , xN}. Unlike in the previous subsection, we now use open-

to-close log-returns {ε1, . . . , εN} for the indices, since realized volatility is only an intra-day measure

that does not capture overnight information. Otherwise we use the same notation and proceed as

before.

Table 4 again displays the average score ratios S
AP
z,αn/S

AP–X
z,αn (z ∈ {q, ES, ξ}). This time the score

ratios are mostly below 1, most dramatically so for the NASDAQ and the Russell 2000. This indicates

that inclusion of the high-frequency measure MedRV does not help in producing more accurate risk

forecasts in our APARCH–X framework. This result is robust to the choice of the high-frequency

volatility measure. Using other measures, such as the simple realized variance or bipower variation,

does not change this qualitative conclusion.

The results of Table 4 are somewhat at odds with Blair et al. (2001) and Koopman et al. (2005),

who generally find intra-day data to be useful. Yet, it must be kept in mind that they compared

volatility forecasts for a different index (the S&P 100) during a different time period using a slightly

different model. In their GARCH-type models, Shephard and Sheppard (2010) and Hansen et al.

(2012) also find high-frequency volatility measures to be useful for out-of-sample volatility prediction.
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z n 1− αn S&P 500 NASDAQ Russell 2000 DJIA

q 1010 1% 0.979 0.908∗∗ 0.918∗∗ 0.989
0.5% 0.987 0.844∗∗ 0.881∗∗ 0.996
0.1% 1.068∗∗∗ 0.774∗ 0.865 1.012

2010 0.5% 0.993 0.786∗∗ 0.879∗ 1.020
0.1% 0.974 0.598∗∗ 0.701∗ 1.063∗∗∗

0.05% 1.081∗∗∗ 0.531∗ 0.607∗ 1.079∗∗∗

ES 1010 1% 0.979 0.907∗∗ 0.918∗∗ 0.989
0.5% 0.987 0.844∗∗ 0.881∗∗ 0.996
0.1% 1.068∗∗∗ 0.774∗ 0.865 1.012

2010 0.5% 0.993 0.786∗∗ 0.879∗ 1.020
0.1% 0.974 0.598∗∗ 0.700∗ 1.063∗∗∗

0.05% 1.081∗∗∗ 0.531∗ 0.607∗ 1.078∗∗∗

ξ 1010 1% 1.012 0.968 0.978 1.025
0.5% 1.018 0.943 0.959 1.022
0.1% 1.064∗∗∗ 0.999 0.944 1.046

2010 0.5% 1.013 0.870 0.923 1.035∗∗∗

0.1% 1.018 0.716∗∗ 0.844 1.100∗∗∗

0.05% 1.035 0.698∗ 0.802 1.144∗∗∗

Table 4: Score ratios S
AP
z,αn/S

AP–X
z,αn (z ∈ {q,ES, ξ}) for forecasts based on n observations and MedRV as

covariates. Significantly different average scores at the 10%/5%/1%-level are indicated by a */**/***.

The differences we find in usefulness of volatility indices and realized volatility measures may be

explained as follows. Recall that in this section, we have forecast volatility using (2) with δ◦ = 1

and p = q = 1. It appears that the additional predictive content of (the square root of) MedRV—a

high-frequency proxy of volatility—above and beyond that of (the square root of) squared returns—a

low frequency proxy of volatility—is rather small. Although MedRV is a less noisy proxy of volatility

than the squared return, its inclusion leads to more noise from the additional parameter that has to

be estimated. This may be exacerbated by the collinearity of MedRV and the squared return, which

adds to the estimation noise. This issue is clearly reduced if volatility indices are used as covariates

instead. These do not provide more ‘time series’ information, but provide ‘cross-sectional’ information

regarding market participant’s expectations about future volatility. Thus, intuitively, volatility indices

provide more incremental information above and beyond squared returns than simply another (albeit

less noisy) proxy of volatility.
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5 Conclusion

Practitioners routinely incorporate exogenous variables in volatility models to forecast risk. To allow

them to assess the uncertainty in those forecasts, we derive asymptotic theory for EVT-based DRM

and expectile forecasts in APARCH–X models. Our framework allows risk forecasts to be improved

in two ways. First, volatility forecasts may be improved by allowing for leverage effects, modelling

of powers of volatility, and incorporating covariates, such as volatility indices or realized volatility

measures. Second, under a Pareto-type tail assumption, the risk incorporated in the innovations can

be estimated more efficiently using EVT-based estimators. We derive asymptotic forecast intervals for

quite general risk measures, which provide valuable additional information beyond the point forecast.

In simulations, we generally find that the forecast intervals provide reasonable coverage, except perhaps

for ‘not too extreme’ risk measures. Using data on major US stock indices, we find that inclusion

of covariates in the volatility model may or may not improve risk forecasts. The expected future

volatility derived from option prices seems to improve risk forecasts, whereas incorporating additional

(past) information in the form of high-frequency measures does not. Thus, as a possible avenue for

future research, it may be of interest to study HEAVY- or Realized GARCH-style models not with

realized volatility measures, but with volatility indices as additional drivers of volatility dynamics.
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