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Abstract

Learning about the tail shape of time series is important in, e.g., economics, finance and risk

management. However, it is well known that estimates of the tail index can be very sensitive to

the choice of the number k of tail observations used for estimation. We propose a procedure that

determines where the tail begins by choosing k in a data-driven fashion using scoring rules. So far,

scoring rules have mainly been used to compare density forecasts. We also demonstrate how our

proposal can be used in multivariate applications in the system risk literature. The advantages of

our choice of k are illustrated in simulations and an empirical application to Value-at-Risk forecasts

for five U.S. blue-chip stocks.
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1 Motivation

Extreme value theory (EVT) has numerous applications in economics, finance and risk management

(Embrechts et al., 1997; Longin, 2017). For instance, it can be used to extrapolate outside the range

of available data to assess the likelihood of extreme events in financial markets (Novak and Beirlant,

2006). Gupta and Liang (2005) use EVT to examine the capital adequacy of hedge funds, that is

naturally linked to extreme events. McNeil and Frey (2000) propose to use EVT for forecasting

Value-at-Risk (VaR) and Expected Shortfall (ES), which are arguably the two most widely used risk

measures in the financial industry. In a comparison of a wide range of forecasting procedures, Kuester

et al. (2006) find extreme value-enhanced techniques to produce excellent VaR and ES predictions.

Using EVT, Straetmans et al. (2008) investigate sectoral contagion risk in the US economy.

All the above mentioned applications require an estimate of the extreme value index. The extreme

value index γ > 0 is the key parameter determining the rate of decay in the power law assumption for

the tail, viz.

1− F (x) = x−1/γL(x), where L(·) is slowly varying. (1)

Slow variation means that L(tx)/L(x) −→
(x→∞)

1 for all t > 0. Intuitively, L(·) behaves asymptotically

like a function converging at infinity. Hence, the tail behavior of 1−F (x) in (1) is essentially determined

by the power law decay of x−1/γ , rendering γ the key tail parameter. The larger γ, the heavier the

tail. The inverse of the extreme value index, α = 1/γ, is called the tail index. In finance, tail index

estimates of returns on speculative assets in developed markets often lie in the interval (2, 4), implying

finite variances and infinite 4th moments (Gabaix et al., 2006).1 Infinite variance returns may be

observed in emerging markets for stock indices and exchange rates (Hill, 2015). In economics, Zipf’s

law for city size and firm size distributions implies α = 1 (Gabaix, 1999, 2009).

Perhaps the most popular estimator of the extreme value index is due to Hill (1975). For observa-

tions X1 . . . , Xn it is given by

γ̂(k) =
1

k

k∑
i=1

log(X(i)/X(k+1)), (2)

where X(1) ≥ . . . ≥ X(n) denote the order statistics and 1 ≤ k < n; see Embrechts et al. (1997) for

a derivation and an overview. To establish asymptotic properties of γ̂(k), one typically requires that

k be an intermediate sequence, i.e., k = k(n) → ∞ and k/n → 0, as n → ∞. The first requirement

ensures that estimation is ultimately based on an infinite number of observations. The second forces

1If a random variable |X| has tail index α, then E |X|α < ∞ for α < α and E |X|α = ∞ for α > α (de Haan and
Ferreira, 2006, Ex. 1.16).
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the order statistics to lie in the ‘tail’. In finite samples, these asymptotic requirements are of little

help when choosing a particular value for k. So a practitioner might ask: Where does the tail begin?

Or, put differently: How do we choose k to obtain a precise estimate of γ?

Generally, the choice of k involves a bias–variance trade-off. When choosing k too large, a bias in

γ̂(k) may appear, since non-tail observations are used. When choosing k too small, γ̂(k) may have

unnecessarily large variance, as too few observations are exploited in estimation.

Advantages of the Hill estimator include certain optimality properties (Csörgő et al., 1985, Theo-

rem 4), the available limit theory under very general conditions (Hill, 2010), and some theory-guided

rules on the choice of k in practice (Drees and Kaufmann, 1998; Danielsson et al., 2001). Because of

these advantages and its widespread use in empirical work (Wagner and Marsh, 2005; Fagiolo et al.,

2008; Straetmans et al., 2008; Trapani, 2016; Gu and Ibragimov, 2018; Sun and de Vries, 2018; Hoga,

2018a), we focus on the Hill estimator in the following. As we point out below, our proposal may be

readily adapted to the choice of k for other estimators of γ, e.g., Peaks-over-Threshold estimators.

A drawback of the Hill estimator—but also of any other estimator of γ—is its sensitivity to the

choice of the sample fraction, as evidenced by numerous Hill ‘horror’ plots; see, e.g., Embrechts et al.

(1997, Fig. 4.1.13) or Resnick (2007, Fig. 4.2). We propose to choose k such that the resulting

Hill estimate produces right-tail quantile estimates—via the Weissman (1978) estimator—that are in

some sense adequate. To judge adequacy in-sample, we use scoring rules, previously used for out-

of-sample density forecast evaluation (Gneiting and Raftery, 2007). Specifically, we use the quantile-

weighted continuous-ranked probability score (QCRPS) of Gneiting and Ranjan (2011) that allows one

to evaluate the density forecast in a particular region of interest. For us, the region of interest naturally

is the tail. As is common in this literature, scores are negatively oriented, so that a lower score is

preferred. Hence, we choose the k that produces the quantile estimates with the lowest QCRPS.

Extant routines to choose k can be classified into two groups—one containing heuristic approaches

and the other containing theoretical approaches. One prominent heuristic approach is the automated

Eye-Ball method (Resnick and Stǎricǎ, 1997), which identifies stable regions in the Hill plot k 7→ γ̂(k).

Further suggestions include the quantile- and probability-driven methods of Dańıelsson et al. (2016)

and Gonzalo and Olmo (2004), respectively. These are based on comparing extreme value index-

based semiparametric quantile and probability estimates with their nonparametric counterparts. The

theoretical approaches—such as those of Drees and Kaufmann (1998) and Dacarogna et al. (2001)—

are based on minimizing the theoretical asymptotic mean squared error of the extreme value index

estimate.

Our proposal differs significantly from the above routines. Unlike the automated Eye-Ball method,
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we choose k such that γ̂(k) ‘explains’ the most extreme observations well in the sense of providing ‘ad-

equate’ extreme quantile estimates. Unlike the quantile- and probability driven methods of Dańıelsson

et al. (2016) and Gonzalo and Olmo (2004), we do not rely on nonparametric (quantile and proba-

bility) estimates as a yardstick for a good tail fit. Such nonparametric estimates may be problematic

because they are known to be highly unreliable in the tail. Instead, we use objective scoring rules to

assess the quality of extreme quantile estimates. In our approach, the k that produces the ‘best’ (in

a minimum score sense) extreme quantile estimates is chosen. Unlike the theoretical approaches, our

choice of k is data-driven and not based on asymptotic arguments, which are only valid for specific

tail index estimators and independent and identically distributed (i.i.d.) data.

The remainder of the paper proceeds as follows. In Section 2, we present our method of choosing

k. Subsection 2.1 introduces some notation and the leading competitor of our choice of k, which is

due to Dańıelsson et al. (2016). Then, Subsection 2.2 presents our scoring rule-based approach to the

choice of k. We also discuss possible applications of our proposal in the context of estimating co-crash

probabilities, relevant in the systemic risk literature, in Subsection 2.3. Section 3 illustrates the good

finite-sample properties of our choice of k and compares it with that of Dańıelsson et al. (2016). An

empirical application to returns on a diverse set of U.S. blue chip stocks in Section 4 demonstrates

the advantages of our approach in VaR forecasting. The final section concludes.

2 Choosing k

2.1 Preliminaries

We consider X1, . . . , Xn with common distribution function (d.f.) F (·). The left-continuous inverse

F←(p) = inf{x ∈ R | F (x) ≥ p} denotes the p-quantile. Assume F (·) satisfies (1) or, equivalently,

lim
t→∞

U(ty)

U(t)
= yγ for all y > 0, (3)

where U(y) = F←(1 − 1/y) denotes the (1 − 1/y)-quantile and γ > 0 is again the extreme value

index.2 This semi-parametric assumption on the (right) tail is satisfied for a wide range of parametric

distributions—such as Student’s t-, Burr-, or Pareto-distribution (Hua and Joe, 2011)—and also for

the stationary distribution of GARCH models (Davis and Mikosch, 1998; Mikosch and Stărică, 2000).

Assumption (3) is a plausible modelling assumption in numerous disciplines, e.g., finance, insurance

and teletraffic modelling.

2Since L(·) is slowly varying, (1) is equivalent to limt→∞
1−F (tx)
1−F (t)

= x−1/γ for all x > 0. From this and the fact that

for non-decreasing functions fn(·) and g(·) the relation limn→∞ fn(x) = g(x) implies limn→∞ f
←
n (x) = g←(x) under

some regularity conditions, the equivalence of (1) and (3) may be shown; see the proof of Theorem 1.2.1.1 in de Haan
and Ferreira (2006) for details.
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An estimate of γ—for instance the Hill (1975) estimate γ̂(k)—is crucial in estimating other tail-

related quantities. Suppose, for instance, one has to estimate the (right-tail) p-quantile F←(p) from

X1, . . . , Xn for some p close to 1. This need arises, for instance, in financial risk management, where

the popular Value-at-Risk (VaR) at level p of some portfolio is simply the p-quantile of its profit & loss

(P&L). Assume that p is extreme in the sense that p� 1− k/n. Then, an estimate of the p-quantile

F←(p) can be motivated from (3) as follows. Inserting t = n/k and y = k/(n[1− p]) in (3) gives

F←(p) = U(1/[1− p]) ≈ U(n/k)

(
k

n[1− p]

)γ
≈ X(k+1)

(
k

n[1− p]

)γ̂(k)
=: x̂p(k). (4)

The idea of the Weissman (1978) estimator x̂p(k) is to estimate the extreme (right-tail) p-quantile of

interest by first estimating the less extreme, and hence more easily estimated, (1− k/n)-quantile (via

X(k+1)) and then to use some extrapolation exploiting the tail shape in (3) to the desired level (via(
k/(n[1− p])

)γ̂(k)
). This estimator is semi-parametric in the sense that it exploits the semi-parametric

assumption (1), which specifies the tail decay via the parameter γ in x−1/γ , but otherwise leaves the

precise form of the tail unspecified, since L(·) is merely assumed to be slowly varying.

The estimator x̂p(k) has several advantages over completely non-parametric estimators of the p-

quantile, such as a (possibly kernel-smoothed) order statistic X(bn(1−p)c+1); see Chen and Tang (2005)

for the corresponding limit theory. First, it can be more precise than non-parametric alternatives

for levels p of practical interest in risk management. Hoga (2019b+) shows that the advantage of

EVT-based estimators over non-parametric estimators is the larger, the heavier the tail and/or the

more extreme the probability level p and/or the more observations are available. Second, x̂p(k) allows

for extrapolation outside the range of available observations, i.e., it produces consistent estimates even

for p > 1− 1/n, where X(bn(1−p)c+1) fails (Drees, 2003).

Remark 1. The Weissman (1978) estimator is designed to estimate right-tail quantiles. However, in

many applications in finance, the lower tail of some variable X is of more interest. In this case, one

can simply consider the negated variable −X and proceed as outlined above.

Dańıelsson et al. (2016) propose to choose k in γ̂(k), such that the semi-parametric estimate

x̂p(k) of the p-quantile is ‘close’ (here, in terms of the sup-norm) to the non-parametric estimate

X(bn(1−p)c+1) over a range of large values of p (here, p = 1 − 1/n, . . . , 1 − kmax/n). More precisely, k

is chosen data-adaptively as

kQ := arg min
k=1,...,kmax

[
sup

p=1−1/n,...,1−kmax/n

∣∣∣X(bn(1−p)c+1) − x̂p(k)
∣∣∣] ,

where kmax is the maximal value of k one is willing to entertain. Dańıelsson et al. (2016) show that
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kQ is robust to the choice of kmax. They also demonstrate that kQ compares favorably with the other

heuristic and theoretical choices mentioned in the Motivation. For this reason, and to keep the present

paper concise, we focus on kQ as the main competitor of our proposal in the remainder of this paper.

A drawback of kQ is that there is some arbitrariness in the choice of the sup-metric to measure

the difference between X(bn(1−p)c+1) and x̂p(k). While Dańıelsson et al. (2016) show in simulations

that this metric works particularly well, other possibilities include the mean absolute deviation and

the mean squared error. Furthermore, and more importantly, the choice kQ is designed to produce a

high agreement between x̂p(k) and the order statistics X(bn(1−p)c+1), where the latter are, however,

well-known to be highly noisy in the tail region of interest. This in turn may produce some undesirable

volatility in the choice of k.

Closely related to the quantile-driven idea of Dańıelsson et al. (2016) is the probability-driven idea

of Gonzalo and Olmo (2004). It is well-known (e.g., Embrechts et al., 1997, Theorem 3.4.13 (b)) that

under (1) the conditional excess distribution (X − u) | X > u has an approximate generalized Pareto

distribution (GPD), GP(σ, ξ), with parameters σ > 0 and ξ = γ for large enough u. Gonzalo and

Olmo (2004) suggest to choose k in u = X(k), such that the empirical conditional excess distribution

of (X−u) | X > u is close in sup-distance to the GPD fitted (via maximum likelihood) to the excesses

above u, i.e., given by X(1) − u, . . . ,X(k) − u.

2.2 Choosing k via scoring rules

Our proposal addresses the above mentioned two drawbacks of kQ by evaluating x̂p(k) using scoring

rules. These are primarily used in the evaluation of density forecasts. By choosing a proper scoring

rule, the arbitrariness in the choice of the metric is avoided. Furthermore, we do not simply rely on

order statistics as the yardstick by which to measure adequacy of the choice of k.

To describe our choice of k, we proceed in two steps. First, let X1, . . . , Xn be drawn from a common

d.f. F (·) with finite first moment and let X denote a generic element of the sequence. Furthermore,

denote by I{·} the indicator function, which equals 1 if the event in brackets is true and 0 otherwise.

To estimate F←(p) via x̂p(k), the integer k has to be chosen. It is well known that the quantile score

QSp(F
←(p), x) = 2

(
I{y≤F←(p)} − p

)(
F←(p)− x

)
is a strictly consistent scoring function for the p-quantile F←(p) of any distribution with finite first

moment (Gneiting, 2011, Thm. 9). This implies that the expected score EF [QSp(x,X)] assumes its

unique minimum at x = F←(p). Thus, the choice of k in the estimate x̂p(k) of F←(p) should render

EF [QSp(x̂p(k), X)] small. Replacing the ‘population’ quantity EF [QSp(x̂p(k), X)] with its sample
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counterpart, a reasonable choice of k minimizes

S
(k)
p,QS =

1

n

n∑
i=1

QSp(x̂p(k), Xi) (5)

for some fixed p� 1− k/n.3

Remark 2. One of the main uses of strictly consistent scoring functions is to compare different point

forecasts (Gneiting, 2011). For instance, in the context of quantile estimation, strict consistency of

the quantile score allows for sensible comparisons of L different sets of point forecasts {f (`)i }i=1,...,n

(` = 1, . . . , L) of the p-quantile via the average score 1
n

∑n
i=1 QSp(f

(`)
i , xi), where the {xi}i=1,...,n are

verifying observations. Since scoring functions are negatively oriented, the set of forecasts with the

lowest average score is preferred.

Remark 3. We are by no means the first to use scoring functions—primarily developed for out-of-

sample forecast comparisons—for in-sample purposes; here, the choice of k. Other in-sample uses of

consistent scoring functions include M -estimation (Huber and Ronchetti, 2009) and quantile regression

(Koenker and Bassett, 1978). For instance, the basic assumption in quantile regression is that the

p-th conditional quantile of some variable Y given X is linear, i.e., Xβp. Then, the quantile regression

estimate of βp is

β̂p = arg min
β

1

n

n∑
i=1

QSp(Xiβ, Yi),

where Yi and Xi are drawn from Y and X, respectively.

Choosing a specific value of p in (5) involves some subjectivity and, at any rate, the γ̂(k) with

optimal k should produce ‘good’ Weissman estimates x̂p(k) for a range of values of p—not just one. So

in a second step, we evaluate x̂p(k) over some interval p ∈ (β, 1) for different choices of k. It appears

intuitive to simply average the quantile scores QSp over p and choose k to minimize

S
(k)
QCRPS =

1

n

n∑
i=1

1

1− β

∫ 1

β
QSp(x̂p(k), Xi), β ∈ (0, 1)

=
1

n

n∑
i=1

QCRPSβ(x̂p(k), Xi).

Here, QCRPSβ(·, ·) = 1/(1 − β)
∫ 1
β QSp(·, ·) is the quantile-weighted continuous-ranked probability

score (QCRPS) of Gneiting and Ranjan (2011). The specific form of the QCRPS has been used by

Holzmann and Klar (2017). Following Dańıelsson et al. (2016), we take β = 1− kmax/n for some kmax

to be specified below.

3Recall that p� 1− k/n is required for x̂p(k) in (4) to make sense.
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The QCRPS was initially developed as a scoring rule for evaluating density forecasts in specific

regions of interest (Gneiting and Ranjan, 2011). Note that scoring functions, on the other hand, are

used for evaluating point forecasts. Generally, a scoring rule is a loss function S(F←(·), x) taking

as arguments the quantile function forecast F←(·) (which implicitly defines the density forecast f(·))

and the verifying realization x of X. In analogy with strictly consistent scoring functions, the scoring

rule is said to be proper if the expected score under this distribution, EF [S(H←(·), X)] assumes its

(not necessarily unique) minimum at H←(·) ≡ F←(·). According to Gneiting and Ranjan (2011), the

QCRPS is a proper scoring rule. Hence, a sensible choice of k to minimizes EF [QCRPS(x̂p(k), X)].

Thus, propriety provides the theoretical foundation of the heuristic to choose k to minimize S
(k)
QCRPS,

i.e., the sample counterpart of EF [QCRPS(x̂p(k), X)].

Remark 4. As pointed out above, the primary use of the QCRPS is in forecast evaluation. The

QCRPS assesses the density forecast in the tail based on verifying realizations (here, x1, . . . , xn).

Propriety of the scoring rule QCRPSβ again allows for valid comparisons via the average scores

1

n

n∑
i=1

QCRPSβ(F̂
(`),←
i , xi), ` = 1, . . . , L,

where F̂
(`),←
i (p) for p ∈ (β, 1) define the quantile function forecasts. By propriety, the forecast with

the lowest score is preferred.

In practice, closed-form expressions for QCRPS may not be available. Yet, the integral can be

approximated to any degree of accuracy. We discretize it at the points p = 1−1/n, . . . , 1−kmax/n = β

to obtain

S̃
(k)
QCRPS =

2

nkmax

n∑
i=1

1−kmax/n∑
p=1−1/n

[
I{Xi≤x̂p(k)} − p

] [
x̂p(k)−Xi

]
, (6)

where x̂p(k) = X(k+1)

(
k/{n[1− p]}

)γ̂(k)
by (4). Finally, this leads to our choice

kQCRPS := arg min
k=1,...,kmax

S̃
(k)
QCRPS. (7)

Just like kQ, this is a data-adaptive choice. The idea of kQCRPS is to choose k, such that the quan-

tile estimates minimize the QCRPS. Hence, the choice of kQCRPS is tailored not only for tail index

estimation via the Hill (1975) estimator, but also for subsequent extreme quantile estimation via the

Weissman (1978) estimator.

Remark 5. (a) Our approach can also be used to choose k for other estimators than Hill’s, e.g.,

the Pickands (1975) estimator or its refinement by Drees (1995). To that end, simply replace
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the Hill estimate in x̂p(k) from (6) with the desired estimator and proceed as before.

(b) The choice of k also appears in Peaks over Threshold (POT) estimation, where a generalized

Pareto distribution (GPD) is fitted to exceedances above a high threshold, typically given by

an order statistic X(k+1) (McNeil and Frey, 2000, Sec. 2.2). Again, the choice of k involves a

bias–variance tradeoff: Choosing k too small increases the variance, while choosing k too large,

the GPD approximation may not be valid, introducing bias.

Estimates of the p-quantile, say, x̃POT
p (k), are then obtained via the quantiles of the fitted GPD;

see McNeil and Frey (2000, Eqn. (10)) for the formula. For this to make sense, we require

p ≥ 1 − k/n, because the GPD approximation is only valid above X(k+1), which estimates the

(1− k/n)-quantile. Hence, POT quantile estimates can be obtained as

x̂POT
p (k) =

x̃
POT
p (k) for p ≥ 1− k/n,

X(bn(1−p)c+1) for p < 1− k/n.

Now, replacing x̂p(k) in (6) with the POT quantile estimates x̂POT
p (k), our method can also be

used to choose k in POT estimation of the GPD parameters.

Remark 6. Clearly, kQ and kQCRPS are non-deterministic sequences. However, limit theory for γ̂(k)

(and also limit theory for x̂p(k)) typically relies on a deterministic intermediate sequence k. To the

best of our knowledge, only Drees et al. (2018) derive asymptotic properties of γ̂(k̃Q) for a stochastic

sequence k̃Q. The data-driven stochastic sequence k̃Q is due to Clauset et al. (2009) and is closely

related to kQ. Drees et al. (2018) show that for i.i.d. data with exact Pareto distribution, the usual

asymptotic normality of γ̂(k̃Q) no longer holds. Deriving a similar result for γ̂(kQCRPS) for possibly

dependent and non-Pareto data is likely to be difficult and is thus left for future research. We provide

some simulation evidence on the asymptotic normality of γ̂(kQCRPS) in Subsection 3.4.

2.3 Extensions to measures of systemic risk

So far we discussed the choice of k in a univariate setting. Yet, extreme value methods have also

become popular in the analysis of multivariate data, particularly in the systemic risk literature (Poon

et al., 2004; Hartmann et al., 2006; Bosma et al., 2019; Nolde and Zhang, 2019+). In this strand of

the literature, significant interest attaches to the estimation of co-crash probabilities of the form

τp = P{X > F←X (p) | Y > F←Y (p)} =
P{X > F←X (p), Y > F←Y (p)}

P{Y > F←Y (p)}

=
P{X > F←X (p), Y > F←Y (p)}

1− p
, (8)
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where X and Y denote returns on two risky assets with continuous d.f.s FX(·) and FY (·), respectively.

Here, p is typically close to 1 in order for the events X > F←X (p) and Y > F←Y (p) to be interpretable

as crashes. If Y denotes the returns on a market portfolio (e.g., the S&P 500), then this co-crash

probability can be seen as an extension of the CAPM-β. Hence, τp is often referred to as a tail-β

(Straetmans et al., 2008). If X and Y denote the returns on, say, two bank stocks, τp can be used

as a measure for contagion risk (Straetmans and Chaudhry, 2015). Finally, τp may be applied within

banks for stress testing purposes. In this case, X represents the returns on the managed portfolio and

Y > F←Y (p) the stress event.

Remark 7. The limit χ = limp↑1 τp is the well-known tail dependence coefficient, which dates back

to Sibuya (1960), but continues to be actively studied (Bücher et al., 2015; Hoga, 2018b). Poon et al.

(2004) consider χ ‘a true measure of systemic risk in international stock markets’. The scalar χ may

also be interpreted in terms of the copula C(·, ·), i.e., the unique function satisfying

P{X ≤ x, Y ≤ y} = C(FX(x), FY (y)), x, y ∈ R.

Then, χ = limu↓0 Ĉ(u, u)/u may be viewed as a directional derivative of the survival copula Ĉ(u, v) =

u + v − 1 + C(1 − u, 1 − v) (u, v ∈ [0, 1]) at the origin. We refer to Embrechts et al. (2003) and Dey

and Yan (2016) for more on copulas and tail dependence, including their practical applications.

We now discuss how our proposal to choose k can also be applied in the estimation of τp. To

estimate τp from a sample (X1, Y1), . . . , (Xn, Yn), we proceed in three steps. First, we reduce the

estimation problem to one dimension. To do so, transform X and Y to unit Pareto marginals via

X̃ = 1/[1− FX(X)] and Ỹ = 1/[1− FY (Y )]. In practice, we use

X̂i =
1

1− F̂X(Xi)
, where F̂X(x) =

1

n+ 1

n+1∑
i=1

I{Xi≤x}.

We divide by (n + 1) in F̂X to avoid division by zero in X̂i. The Ŷi are calculated analogously. The

Pareto transformation allows us to write

P{X > F←X (p), Y > F←Y (p)} = P{X̃ > 1/(1− p), Ỹ > 1/(1− p)}

= P{min(X̃, Ỹ ) > 1/(1− p)} = P{Z > s},

where Z = min(X̃, Ỹ ) and s = 1/(1 − p). Thus, we have reduced the estimation of τp = P{Z >

s}/(1− p) to one dimension.

In the second step, we introduce an extreme value-type assumption for the distribution of Z, that

allows us to extrapolate outside the range of available observations. Going back to Ledford and Tawn
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(1996, 1997), a widely applicable semi-parametric model for the joint tail of (X,Y ) is

P{Z > s} = LZ(s)s−1/γZ , γZ ≤ 1, (9)

where LZ(·) again denotes a slowly varying function. Heffernan (2000) gives an extensive list of

bivariate distributions satisfying (9). The parameter γZ measures the amount of extremal dependence

in (X,Y ). The smaller (larger) γZ , the lighter (heavier) the tail of Z and, hence, the smaller (larger)

the probability of joint extremes of X and Y .

Finally, we derive an estimator of P{Z > s} based on (9). By inverting the steps leading to the

Weissman (1978) estimator in (4), ps = P{Z > s} can be estimated for large s via

p̂s =
k

n

 Ẑ(k+1)

s

1/γ̂Z(k)

,

where Ẑ(k+1) is the k-th largest value of Ẑi = min(X̂i, Ŷi), i = 1, . . . , n, and γ̂Z(k) is the Hill estimator

based on Ẑ(1), . . . , Ẑ(k+1). From this and (8), we get

τ̂p =
k

n
s

 Ẑ(k+1)

s

1/γ̂Z(k)

.

This estimator has been used in applied work by, e.g., Hartmann et al. (2006), Straetmans et al. (2008)

and Straetmans and Chaudhry (2015).

The choice of k in γ̂Z(k) is again crucial in calculating τ̂p. In principle, any of the methods to

choose k discussed above can be used here as well. For instance, Hartmann et al. (2006, p. 175) use

Hill plots, and Straetmans et al. (2008, p. 22) rely on the exponential regression algorithm of Beirlant

et al. (1999). Alternatively, we suggest to choose k as the argument that minimizes S̃
(k)
QCRPS. Of course,

the variables Xi in the definition of S̃
(k)
QCRPS in (6) need to be replaced by Ẑi. Thus, our procedure

can be applied not only in a univariate setting, but also more broadly in the estimation of contagion

risk measures.

3 Monte Carlo Simulations

3.1 Simulation setup

We compare the two choices of k ∈ {kQ, kQCRPS} regarding their ability to produce accurate es-

timates γ̂(k) of γ (Subsection 3.2) and accurate extreme quantile estimates x̂p(k) over the range

p = 0.90, . . . , 0.9999 (Subsection 3.3). As mentioned above, we confine ourselves to this comparison

for brevity and, more importantly, because Dańıelsson et al. (2016) show in extensive simulations that

11



kQ works well compared to the most popular existing alternatives.

In our simulations we consider all data-generating processes (DGPs) used by Dańıelsson et al.

(2016) and some additional DGPs. We use the following models for i.i.d. data X1, . . . , Xn:

(M1) tα distribution with α = 1, 3, 5, 7 degrees of freedom;

(M2) Fréchet(α) distribution with d.f. F (x) = exp(−x−α), x > 0, α = 1, 3, 5, 7;

(M3) Symmetric stable (SS) distribution with index parameter α = 0.5, 1.0, 1.5, 1.9;

(M4) Pareto distribution, Pa(α), with 1− F (x) = x−α for x > 1 and α = 1, 3, 5, 7;

(M5) Burr(τ, λ) distribution of type XII, 1 − F (x) = 1/(1 + xτ )λ for x > 0, with τ = 2, λ =

1/2, 3/2, 5/2, 7/2.

The parameter α in (M1)–(M4) indicates the tail index, and for (M5), the tail index is α = λτ . For

more detail on the above distributions, we refer to Table 2.1 in Beirlant et al. (2004).

For dependent data we use (G)ARCH models {Xi = σiεi}i=1,...,n with εi
i.i.d.∼ N(0, 1) and σ2i =

ω◦ + α◦X2
i−1 + β◦σ2i−1. We set:

(M6) ARCH: ω◦ = 10−6, α◦ = 0.6, 0.7, 0.8, 0.9 and β◦ = 0, leading to tail indices of the stationary

distributions of α = 3.82, 3.17, 2.68, 2.30, respectively;4

(M7) GARCH: ω◦ = 10−6, α◦ = 0.4 and β◦ = 0.27, 0.43, 0.53, 0.599, leading to tail indices of the

stationary distributions of α = 4.99, 3.96, 2.98, 2.03, respectively.

Finally, we consider GARCH-filtered residuals for tail estimation.

(M8) Filtered GARCH: Consider {ε̂i = Xi/σ̂i}, were Xi is generated according to the GARCH model

in (M7) with parameters ω◦ = 10−6, α◦ = 0.4, β◦ = 0.53 and (standardized) tα-distributed

errors εi with α = 5, 7. Volatility estimates σ̂2i = ω̂◦ + α̂◦X2
i−1 + β̂◦σ̂2i−1 are based on quasi-

maximum likelihood (QML) estimates (ω̂◦, α̂◦, β̂◦) of the GARCH parameters.

The distributions in (M1)–(M3) and (M6) are those used by Dańıelsson et al. (2016). We also

consider a GARCH model, because it is empirically more relevant than the simpler ARCH specification

in (M6). The parameters in (M6) and (M7) are chosen such that the implied tail indices are roughly

between 2 and 4, which is the range of implied tail indices of fitted GARCH models in practice; see,

4Mikosch and Stărică (2000, Thm. 2.1) show that the true tail indices of the (G)ARCH models can be computed as
the unique positive solution α > 0 of E[α◦ε21 + β◦]α/2 = 1. We have obtained the true tail indices of models (M6) and
(M7) by solving this equation for α.
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e.g., Mikosch and Stărică (2000) for foreign exchange returns. We use model (M8), because it is often

of interest in risk management to estimate the tail index of GARCH-filtered residuals; see, e.g., Chan

et al. (2007) and Hoga (2019a+). Unlike in (M1), we do not consider degrees of freedom α = 1, 3

for the t-distributed errors in (M8), since finite fourth moments of the errors are required for the

asymptotic normality of QML estimates in GARCH models (Francq and Zaköıan, 2010).

We use sample sizes of n = 500, 1000, 2000, 5000 that are typically used in practice, and choose

kmax = bn0.6c in calculating kQ and kQCRPS. This choice leads to almost uniformly better results

across all distributions and sample sizes considered here than, e.g., kmax = bn0.5c or kmax = bn0.7c.

Furthermore, since kQCRPS ≤ kmax = bn0.6c, the theoretical requirement that kQCRPS/n → 0 is

automatically satisfied. All results in this section are based on R = 10000 replications.

3.2 Estimation of γ

For the DGPs in (M1)–(M8), Tables 1 and 2 display the simulation root mean squared error (RMSE)

and the bias of γ̂(k) with k ∈ {kQ, kQCRPS}. The RMSE is calculated as
√

1
R

∑R
r=1(γ̂

(r)(k(r))− γ)2,

and the bias as 1
R

∑R
r=1 γ̂

(r)(k(r)) − γ for R simulation runs of γ̂(r)(k(r)). Table 3 shows the average

values of the chosen k ∈ {kQ, kQCRPS} over all R replications and Table 4 shows their standard errors.

We draw the following conclusions from Tables 1–4:

1. RMSE: We make two observations. First, as expected, RMSEs tend to be lower for larger sample

sizes for both choices of k. The reduction in RMSEs is particularly marked for kQCRPS, whereas

the improvements are relatively small for kQ. For instance, for the Fréchet(α = 3) distribution,

the RMSE using kQCRPS drops in half from 5.6 (n = 500) to 2.8 (n = 5000). For kQ the RMSE

only decreases from 11.5 to 10.4. Thus, the relative advantage of kQCRPS increases with the

sample size.

This may be explained by the small increase in the average number of order statistics kQ when

n increases. For instance, as Table 3 shows for the Fréchet(α = 3) distribution, the effective

(average) sample size using kQ increases by a factor of 2.5 from 13 (n = 500) to 32 (n = 5000).

Yet, using kQCRPS it jumps from 28 to 107, representing a 3.8-fold increase.

Second, RMSEs of estimates γ̂(k) (k ∈ {kQ, kQCRPS}) tend to improve, the lighter the tail, i.e.,

the larger α. This is as expected, because the theoretical asymptotic variance of γ̂(k) is 1/α2

(Beirlant et al., 2004, p. 111). However, this general tendency is sometimes reversed for kQCRPS,

most notably for the tα-distribution. Table 2 suggests that this may be due to the bias increasing

with α.
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 79.4 19.0 76.3 16.2 73.6 13.0 69.6 9.9
3 12.3 10.3 10.8 8.2 10.4 6.7 10.6 5.1
5 8.5 13.3 7.2 11.4 6.0 9.7 5.4 7.8
7 9.6 15.6 7.7 13.5 6.3 11.7 5.1 9.7

Fréchet 1 79.6 19.3 74.6 15.9 69.9 13.1 69.8 10.1
3 11.5 5.6 10.9 4.6 10.9 3.7 10.4 2.8
5 5.8 3.4 5.6 2.7 5.2 2.2 5.1 1.7
7 3.8 2.4 3.6 1.9 3.4 1.6 3.3 1.2

SS 0.5 172 60.5 177 58.0 175 55.0 167 50.0
1.0 79.8 19.5 75.4 15.8 71.8 13.0 63.1 10.1
1.5 34.4 14.4 31.9 12.3 30.9 10.2 31.3 7.8
1.9 29.5 24.4 28.3 25.2 26.0 25.7 23.3 25.3

Pareto 1 79.8 19.2 72.9 15.8 70.2 13.0 69.1 10.0
3 11.0 5.7 10.9 4.6 10.5 3.8 10.7 2.8
5 5.8 3.3 5.3 2.7 5.2 2.2 5.0 1.7
7 3.8 2.4 3.6 1.9 3.4 1.5 3.2 1.2

Burr 1 79.8 19.0 71.6 15.9 73.7 12.9 70.9 9.9
3 11.1 6.6 10.8 5.4 10.9 4.3 10.3 3.3
5 6.5 7.1 5.6 6.1 5.4 5.2 5.1 4.3
7 6.0 8.3 5.1 7.3 4.4 6.5 3.8 5.5

ARCH 2.30 17.3 12.0 16.9 10.1 16.7 8.4 16.4 6.3
2.68 14.0 10.5 14.0 8.8 14.2 7.0 13.8 5.4
3.17 11.9 10.0 11.6 7.9 11.7 6.6 11.4 5.0
3.82 9.4 9.8 9.2 8.1 9.3 6.7 8.6 5.2

GARCH 2.03 20.9 15.0 21.0 14.3 21.0 13.7 20.9 12.6
2.98 10.8 10.6 10.9 9.5 11.1 8.3 10.9 6.7
3.96 8.4 10.2 7.9 8.6 7.7 7.0 8.0 5.4
4.99 7.7 10.8 6.9 9.0 6.2 7.4 6.1 5.9

Filtered 5 7.9 13.2 6.7 11.2 5.7 9.5 5.2 7.8
GARCH 7 9.2 15.3 7.5 13.4 6.1 11.5 4.8 9.7

Table 1: RMSE(×10−2) of γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8) with true tail
index α. Lower values for RMSE are set in boldface.

We also observe that kQCRPS improves more vis-à-vis kQ, the smaller α, i.e., the heavier the tail.

A reason for this may be as follows. As pointed out in Section 2.1, kQ is designed to produce

a high agreement between x̂p(k
Q) and the order statistics X(bn(1−p)+1c) in the tail. Yet, these

large order statistics may be very volatile for heavy-tailed data and, hence, kQ may be chosen

to fit the ‘noise’ in the tail. Note that the influence of a single large observation X(bn(1−p)+1c) is

reduced in (6), since the score is an average over all observations and large p.
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 7.0 −0.8 5.3 −0.2 3.1 −0.4 0.2 −0.1
3 1.0 8.1 −0.3 6.5 −1.0 5.2 −1.5 4.1
5 5.3 12.4 3.8 10.8 2.6 9.2 1.5 7.6
7 8.1 15.0 6.3 13.1 4.9 11.4 3.6 9.6

Fréchet 1 8.2 0.1 4.1 0.1 1.8 −0.1 0.4 0.0
3 −2.7 −0.0 −2.6 0.0 −2.6 0.0 −2.6 0.0
5 −1.5 0.0 −1.7 −0.0 −1.5 0.0 −1.4 0.0
7 −1.1 −0.0 −1.1 0.0 −1.0 0.0 −1.0 0.0

SS 0.5 31.2 3.7 31.6 3.9 28.7 5.0 24.6 4.8
1.0 7.6 −0.4 3.8 −0.4 2.8 −0.3 −1.4 −0.1
1.5 −8.6 −9.3 −7.5 −8.3 −6.8 −6.9 −5.8 −5.3
1.9 −25.7 −23.8 −23.0 −24.9 −18.2 −25.4 −10.8 −25.1

Pareto 1 7.2 −1.5 2.7 −0.7 1.0 −0.7 0.3 −0.1
3 −3.1 −0.5 −2.8 −0.4 −2.8 −0.3 −2.6 −0.1
5 −1.8 −0.4 −1.7 −0.1 −1.5 −0.1 −1.4 −0.0
7 −1.3 −0.2 −1.2 −0.1 −1.1 −0.1 −1.0 −0.0

Burr 1 6.7 −1.2 2.8 −1.1 2.6 −0.7 2.0 −0.2
3 −1.4 2.8 −1.8 2.4 −2.0 2.0 −2.3 1.7
5 1.9 5.9 1.1 5.2 0.6 4.5 0.1 3.8
7 3.9 7.6 3.0 6.8 2.3 6.2 1.6 5.3

ARCH 2.30 −5.6 2.8 −6.3 2.4 −6.5 1.9 −6.9 1.4
2.68 −3.3 4.1 −3.9 3.5 −3.9 2.9 −4.4 2.3
3.17 −0.8 5.8 −1.6 4.8 −2.0 4.1 −2.4 3.1
3.82 1.0 7.3 0.2 6.2 −0.4 5.2 −1.0 4.2

GARCH 2.03 −18.2 −4.8 −18.6 −3.6 −18.6 −2.3 −18.7 −1.1
2.98 −5.5 3.7 −6.0 3.4 −6.3 3.0 −6.5 2.4
3.96 0.2 7.4 −0.7 6.2 −1.4 5.1 −1.8 4.1
4.99 3.2 9.4 1.9 7.9 1.0 6.6 0.4 5.3

Filtered 5 4.8 12.2 3.4 10.6 2.2 9.1 1.2 7.5
GARCH 7 7.7 14.7 6.0 13.0 4.7 11.3 3.4 9.6

Table 2: Bias(×10−2) of γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8) with true tail
index α. Lower absolute values for bias are set in boldface.

2. Bias: Just like the RMSE, the bias tends to decrease the longer the sample. The simulation

bias in Table 2 varies less systematically than the RMSE: It can be larger for larger α (as for

the tα distribution) or for smaller α (kQ for GARCH). Also, it can either be mostly negative

(Pareto distribution) or mostly positive (tα distribution). On balance, there do not appear to

be marked differences in bias between kQ and kQCRPS. The latter choice tends to lead to lower

bias for heavy-tailed distributions, while the former tends to produce estimates with lower bias
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 9.7 26 12 38 17 57 24 96
3 10 28 14 42 18 63 25 108
5 9.9 28 12 43 15 65 22 113
7 9.5 28 11 44 14 66 19 116

Fréchet 1 9.4 26 13 38 16 57 23 96
3 13 28 18 42 23 63 32 107
5 15 29 19 43 25 63 36 108
7 15 29 20 43 26 64 38 109

SS 0.5 6.4 20 8.7 27 12 38 17 57
1.0 9.4 26 12 39 16 57 24 97
1.5 13 28 18 41 23 61 33 102
1.9 13 27 19 41 26 59 33 105

Pareto 1 9.6 26 13 38 17 56 24 96
3 14 28 18 42 24 63 33 106
5 15 29 20 43 26 64 36 108
7 15 29 21 44 27 64 37 109

Burr 1 9.7 26 13 39 17 57 23 96
3 12 28 16 42 21 62 29 106
5 12 29 15 43 20 64 27 109
7 11 29 14 44 18 65 25 113

ARCH 2.30 9.8 28 12 42 15 62 20 106
2.68 10 28 12 42 15 63 21 107
3.17 10 28 13 43 16 63 22 108
3.82 10 28 13 43 17 64 23 110

GARCH 2.03 8.2 28 9.9 42 11 62 13 106
2.98 9.1 28 11 43 14 64 18 109
3.96 9.7 28 12 43 15 65 21 111
4.99 9.8 28 12 44 16 65 22 113

Filtered 5 9.5 28 12 43 15 65 21 113
GARCH 7 9.2 28 11 44 14 66 19 116

Table 3: Average number of k used in γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8)
with true tail index α.

for lighter-tailed distributions. Since it is for heavy-tailed distributions that (semiparametric)

extreme value methods have a larger relative advantage over nonparametric methods (Hoga,

2019b+), the choice kQCRPS appears to be preferable in terms of bias.

3. Average number of k: By definition, 1 ≤ kQ, kQCRPS ≤ kmax. For n = 500, 1000, 2000, 5000

we have kmax =
⌊
n0.6

⌋
= 41, 63, 95, 165, respectively. Hence, Table 3 shows that both kQ and
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 11 10 16 16 23 25 38 46
3 9.5 7.2 14 11 20 16 34 28
5 8.4 6.2 11 9.2 17 13 27 23
7 7.8 5.7 10 8.2 15 11 23 19

Fréchet 1 10 10 16 16 23 25 38 46
3 11 7.8 17 12 25 18 41 31
5 11 7.5 17 11 25 17 42 30
7 11 7.4 17 11 25 17 42 30

SS 0.5 9.5 11 14 18 21 27 34 48
1.0 10 10 16 16 23 25 38 46
1.5 12 8.8 18 13 27 20 44 36
1.9 10 7.3 16 11 24 18 36 26

Pareto 1 11 10 16 16 24 25 38 46
3 11 7.9 17 12 25 18 41 31
5 11 7.5 17 11 25 17 42 30
7 11 7.5 18 11 26 17 42 30

Burr 1 11 10 16 16 23 25 38 46
3 11 7.7 16 12 23 18 38 31
5 10 7.2 14 10 21 16 34 28
7 9.5 6.7 13 10 19 14 30 25

ARCH 2.30 9.1 7.5 13 11 19 17 31 29
2.68 9.1 7.1 13 11 18 16 31 29
3.17 9.0 6.9 13 10 19 16 31 28
3.82 8.8 6.5 13 10 19 15 31 26

GARCH 2.03 7.2 6.3 10 9.8 13 14 21 26
2.98 7.9 6.3 11 10 16 15 27 26
3.96 8.4 6.1 12 9.6 18 14 29 26
4.99 8.1 5.8 11 8.9 17 13 29 24

Filtered 5 8.1 5.9 11 9.0 16 13 27 22
GARCH 7 7.6 5.5 10 8.0 15 11 22 18

Table 4: Standard deviation of k’s used in γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8)
with true tail index α.

kQCRPS do not have a strong tendency to pick either of the corner solutions 1 or kmax of the

minimization problem in (7).

Furthermore, for fixed sample size n, there is little variation in average kQCRPS across models,

unlike for kQ. For instance, for n = 500 and excluding the SS distribution with α = 0.5, the

average kQCRPS varies between 26 and 29, while the average kQ is between 8.2 and 15. The small

variation in kQCRPS is quite remarkable, as the underlying distributions exhibit quite different
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tail behaviour.

4. Standard deviation of k’s: Table 4 shows that, with the exception of extremely heavy-tailed data

with α ≤ 1, the standard deviations of the choice kQCRPS tend to be lower than those for kQ.

This supports the intuition that the choice kQ is more volatile, since it is designed to produce a

high agreement between x̂p(k) and the noisy tail observations X(bn(1−p)+1c).

5. Comparing the results for the t5- and t7-distribution with those for the filtered GARCH residuals,

that are only approximately (standardized) t5- and t7-distributed, we find the differences in

Tables 1–4 to be very small. This is as expected, because Chan et al. (2007) show that tail index

estimates of the GARCH-errors are asymptotically not affected by the GARCH-filter. This

is because model parameters can be estimated
√
n-consistently, whereas tail index estimates

converge at a slower
√
k-rate.

6. The models with α ≤ 1 in Table 1 have infinite first moments. However, finite first moments are

required for propriety of the scoring rule underlying the choice kQCRPS. Nonetheless, kQCRPS

significantly outperforms kQ in terms of RMSE even for those distributions with α ≤ 1.

We conclude that kQCRPS leads to more precise Hill estimates of γ than kQ for heavy-tailed distri-

butions with small tail index α and also for lighter-tailed data when the sample size n is sufficiently

large. But kQCRPS also leads to good results in the remaining cases. The reason for the good perfor-

mance of kQCRPS may be that more observations are used when employing kQCRPS—thus, reducing

the variance of the tail index estimates—while at the same time keeping the bias constant, since only

additional observations from the tail are included. Thus, for particularly heavy-tailed data, which are

often found in economics and finance, kQCRPS often offers a superior bias–variance trade-off.

Remark 8. (a) The above conclusions may depend on the particular tail index estimator being

used. To provide further evidence on the merit inherent in the choice kQCRPS, we also consider

the log-log rank-size estimator of Gabaix and Ibragimov (2011) in Appendix B of the Online

Supplemental Appendices. The results in Appendix B demonstrate even larger efficiency gains

from using kQCRPS than those reported here for the Hill (1975) estimator.

(b) The smallest sample size of n = 500 we consider in the simulations seems to be a lower bound for

applications of EVT in practice; see, e.g., Quintos et al. (2001) and Hill (2015). The theoretical

literature supporting the use of EVT in smaller samples is in its infancy; see Müller and Wang

(2017). We speculate that even in these shorter samples our approach to the choice of k works

well, even though in the above simulations we observe some tendency of kQCRPS to work better
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Figure 1: Log-log plots of RMSEp(k
Q)/RMSEp(k

QCRPS) for different values of 1−p. Here, RMSEp(k)
is the RMSE of x̂p(k) (k ∈ {kQ, kQCRPS}). Results shown for models (M1), (M2), and (M6) with
indicated α.

in larger samples. We think so because the results in Appendix B suggest that kQCRPS may

sometimes lead to more precise estimates of γ in smaller samples.

3.3 Estimation of extreme VaR

In typical financial applications, interest centers not so much on γ, but rather on risk measures like the

Value-at-Risk at level p (with p typically close to 1), i.e., the p-quantile of the P&L of the portfolio.
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VaR at level p can be estimated by the Weissman (1978) estimator x̂p(k) based on losses X1, . . . , Xn.

To assess if the choice kQCRPS improves VaR estimation at different levels, Figure 1 shows the

ratio of the RMSEs of x̂p(k
Q) over those of x̂p(k

QCRPS) for different values of n ∈ {500, 2000, 5000}

and p ∈ {0.90, 0.95, 0.975, 0.99, 0.995, 0.999, 0.9995, 0.9999}. To conserve space, we only consider

the models (M1), (M2), and (M6) of Dańıelsson et al. (2016) and the values of α indicated in the

panel captions. The plots for the remaining models (M3)–(M5) and (M7)–(M8) can be found in

Appendix A of the Online Supplemental Appendices.

In general, the good properties of γ̂(kQCRPS) carry over to x̂p(k
QCRPS). Since most lines are

above 1, the choice kQCRPS leads to more precise quantile estimates than kQ in most cases. The

superiority is particularly marked for the small levels p = 0.90, 0.95 and the most extreme quantiles

of the very heavy-tailed t2- and Fréchet(2)-distribution. Also, the observations from Subsection 3.2

that the relative advantage of the tail shape estimates γ̂(kQCRPS) over γ̂(kQ) get larger for larger n

and smaller α, manifest themselves in Figure 1. There, the improvements in VaR estimation precision

also tend to be larger for longer samples and heavier tails.

In Appendix A of the Online Supplemental Appendices we complement Figure 1 with a similar

plot for estimates of Expected Shortfall—another popular risk measure in the financial industry. This

plot further supports our choice kQCRPS.

3.4 Inference on γ with kQCRPS

For i.i.d. data with tails obeying a second-order refinement of (1), it is well-known (see, e.g., Resnick,

2007, Proposition 9.3) that

√
k(γ̂(k)− γ)

d→ N(0, γ2) (10)

for some intermediate sequence k. For a wide range of dependent data, a similar result holds with a

different asymptotic variance than γ2 (Hill, 2010). Our choice of k is obviously stochastic and, hence,

the asymptotic approximation in (10) may be misleading when drawing inference on γ in practice.

To judge the possible distortions caused by our stochastic choice kQCRPS, we compare the kernel

density estimates of
√
kQCRPS,(r)

γ
(γ̂(r)(kQCRPS,(r))− γ) and

√
k

γ
(γ̂(r)(k)− γ), (11)

where r = 1, . . . , R again runs over all R = 10000 replications, and k is the average value of kQCRPS

reported for the respective model in Table 3. The discrepancy between both kernel density plots—

shown in Figure 2—may then be regarded as a measure for the distortions incurred by using the
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Figure 2: Kernel density plots of
√
kQCRPS,(r)

γ (γ̂(r)(kQCRPS,(r)) − γ) (black line marked with triangles)

and

√
k
γ (γ̂(r)(k)−γ) (blue line marked with circles) for models (M1), (M2), and (M6) with indicated

α. The dotted red line depicts the standard normal density. See the web version of this article for
colour.

stochastic kQCRPS instead of a deterministic one.

Clearly, it would also be possible to compare the kernel density plot based on
√
kQCRPS,(r)(γ̂(r)(kQCRPS,(r))−

γ) with the density of a N(0, γ2)-distribution. Yet, depending on the choice of k and second-order be-

haviour of F (·), bias terms in the mean of the asymptotic distribution may appear (see, e.g., de Haan
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and Ferreira, 2006, Theorem 3.2.5). Also, for dependent data (e.g., the (G)ARCH models in (M6)

and (M7)) the asymptotic variance γ2 is inflated by some hard-to-calculate factor (Hoga, 2017). For

these reasons we present the comparison as outlined above.

Figure 2 shows that the finite-sample distribution of the quantities in (11) does not differ signifi-

cantly. Hence, choosing the stochastic kQCRPS does not invalidate inference for the tail index, when

compared with the fixed k. Rather, other factors—most notably asymptotic bias terms, but possibly

also asymptotic variances different from γ2 for the ARCH processes—have a larger impact on inference

and thus invalidate the standard normal limit for the two quantities in (11).

4 Application

We explore the benefits of using kQCRPS in a risk management application. Consider the N = 5032

log-losses of the five Dow Jones stocks Apple (AAPL), Disney (DIS), Microsoft (MSFT), Nike (NKE)

and Pfizer (PFE). These shares represent a highly diversified set of U.S. blue-chips. The log-losses

are sampled in the 20 year period from 1/1/1998 through 12/31/2017 and are calculated as Xi =

− log(Pi/Pi−1), where Pi denotes the closing price on day i.5 In this application, we consider rolling

window forecasts—based on some window length n—of the Value-at-Risk, which is of key importance

in risk management.

For ease of exposition, consider the losses X1, . . . , Xn in the first window. The Value-at-Risk

is defined as the loss that is only exceeded with some small probability (1 − p) by ‘tomorrow’s’

loss Xn+1 conditional on X1, . . . , Xn. Clearly, one could use the estimate x̂p(k) of the uncondi-

tional quantile F←(p) based on the raw losses X1, . . . , Xn, as was done in the simulations for models

(M1)–(M7). Yet, such an estimate, while accurate on average, is likely to be too low when market

conditions—embodied by X1, . . . , Xn—are volatile and too high when markets are calm. Hence, to

take into account this volatility clustering of the losses—shown exemplarily for the Apple shares in

Figure 3—we focus on the conditional Value-at-Risk, VaRp,n+1, i.e., the p-quantile of the conditional

d.f. Fn+1(x) := P
{
Xn+1 ≤ x | Xn, Xn−1, . . .

}
. The conditional d.f. Fn(·) is more more informative

than the unconditional d.f. F (·), as it incorporates the current state of the market. We describe next

how the methods proposed in this paper can be used to compute VaRp,n+1.

Much, if not all, of the variation in the conditional d.f. Fn+1(x) of losses on speculative assets is

due to changes in the variance. The benchmark models to incorporate such changes are Bollerslev’s

5All data have been taken from finance.yahoo.com.
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(1986) GARCH(1,1) processes

Xi = σiεi, εi
i.i.d.∼ (0, 1),

σ2i = ω◦ + α◦X2
i−1 + β◦σ2i−1, ω◦ > 0, α◦ ≥ 0, β◦ ≥ 0. (12)

For GARCH models, it is easy to show that

VaRp,n+1 = σn+1F
←
ε (p),

where Fε(·) is the d.f. of εi.

To obtain VaR forecasts from log-losses X1, . . . , Xn in practice, McNeil and Frey (2000) suggest a

two-step procedure based on EVT. While refinements of McNeil and Frey’s (2000) popular two-step

procedure exist (Laurini and Tawn, 2008), it has been shown to be theoretically sound (Chan et al.,

2007; Hoga, 2019a+) and robust to misspecification (Jalal and Rockinger, 2008). In the first step,

we obtain QML parameter estimates to forecast volatility σ̂2n+1 = ω̂◦ + α̂◦X2
n + β̂◦σ̂2n. Then, the

standardized residuals {ε̂i = Xi/σ̂i}i=11,...,n are used to estimate F←ε (p) using the Weissman (1978)

estimator, say x̂ε̂p(k).6 Thus, in this application, the method of choosing k is not applied to the

raw data {Xi}, but rather to the GARCH-filtered residuals {ε̂i}, similarly as in model (M8) in the

simulations. The resulting VaR forecast is then

V̂aR
k

p,n+1 = σ̂n+1x̂
ε̂
p(k).

We repeat this procedure based on a moving window Xj , . . . , Xj+n−1 (j = 1, . . . , N −n) to obtain

VaR forecasts V̂aR
k,(j)

p,n+1 (j = 1, . . . , N − n). We compare the choices k = kQ and k = kQCRPS.

Furthermore, we let n = 500, 1000, 2000, such that for each moving window we have, respectively,

490, 990, 1990 standardized residuals for extreme quantile estimation. We consider the levels p =

95%, 99%, 99.5%, 99.9%, 99.95%, 99.99%.

To illustrate this procedure, Figure 3 displays the rolling window estimates of the GARCH param-

eters (ω◦, α◦, β◦) for the Apple log-losses with n = 2000. There is some evidence for a structural break

in the GARCH parameters during the financial crisis in 2008. As is frequently found for financial

data, α◦ + β◦ is close to, but less than, one and the tail index estimates fluctuate around four. The

bottom plot shows the log-losses together with the 99%-VaR forecasts, which are calculated based on

the previous n = 2000 observations.

As a benchmark, we also consider VaR forecasts with a nonparametric (NP) estimator of F←ε (p) to

illustrate the advantages of the semiparametric Weissman (1978) estimator. Specifically, the forecast

6We discard the first 10 standardized residuals ε̂1, . . . , ε̂10, because they are unreliable due to initialization effects in
the variance equation (12).
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Figure 3: Rolling window estimates of GARCH parameters (ω̂◦, α̂◦, β̂◦) and tail index α̂ =
1/γ̂(kQCRPS) for Apple returns with n = 2000. The bottom plot displays the resulting rolling

window VaR forecasts V̂aR
kQCRPS,(j)

p=0.99 (dotted line) together with the log-losses (solid line) Xj+n

(j = 1, . . . , N − n).

of VaRp,n+1 based on X1, . . . , Xn is given by

V̂aR
NP

p,n+1 = σ̂n+1ε̂(bn(1−p)c+1),

where ε̂(bn(1−p)c+1) is the (bn(1 − p)c + 1)-largest value of {ε̂i = Xi/σ̂i}i=11,...,n. This procedure is

iterated over moving windows as before to yield (N − n) VaR forecasts V̂aR
NP,(j)

p,n+1 , j = 1, . . . , N − n.
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We compare the three different sets of forecasts via their average scores (see Remark 2)

S
M
p,QS =

1

N − n

N−n∑
j=1

QSp(V̂aR
M,(j)

p,n+1, Xn+j),

where M ∈ {kQ, kQCRPS,NP}. Table 5 shows the ratios of the average scores S
kQCRPS

p,QS /S
kQ

p,QS and

S
kQCRPS

p,QS /S
NP
p,QS for the different stocks and n ∈ {500, 1000, 2000}. Since scores are negatively oriented,

values below 1 indicate a superior performance of the forecasts V̂aR
kQCRPS,(j)

p,n+1 .

To judge the statistical significance of the VaR score differences S
kQCRPS

p,QS − Sk
Q

p,QS and S
kQCRPS

p,QS −

S
NP
p,QS, we follow Taylor (2019) and Hoga (2019a+) and apply a simple Diebold and Mariano (1995)

test. More precisely, to judge the statistical significance of the score difference S
kQCRPS

p,QS − S
kQ

p,QS

(the other score difference can be handled similarly), we use the test statistic
√
N − nS

kQCRPS

p,QS −Sk
Q

p,QS

σ̂N−n

suggested by Diebold and Mariano (1995), where σ̂N−n denotes the sample standard deviation of the

score differences ∆j = QSp(V̂aR
kQCRPS,(j)

p , Xn+j) − QSp(V̂aR
kQ,(j)

p , Xn+j). Under the null of equal

forecast accuracy, the test statistic is standard normally distributed. Score ratios with statistically

significant score differences at the 10%, 5%, 1%-level are marked with a ∗/∗∗/∗∗∗ in Table 5. We make

the following observations from Table 5.

1. For the smallest level p = 95% there is little difference between the methods. However, as

expected, the extreme value methods improve significantly upon the nonparametric estimates

the more extreme p. The ratios can go as low as 0.04 for the Apple stocks with n = 500 and

p = 99.99%.

2. Comparing only the extreme value methods, we find that choosing kQCRPS leads to better

forecasts than kQ in most cases, particularly for more extreme levels of p.

This may be explained as follows. As already seen in the simulations in Section 3, kQ tends to

choose fewer upper order statistics for tail estimation than kQCRPS. This may lead to quantile

estimates that are too volatile and hence are outperformed by kQCRPS.

The results clearly demonstrate the superior performance of EVT-enhanced methods. They also

suggest that one can improve these methods by a judicious choice of k, such as kQCRPS proposed in

this paper.

The choice kQCRPS and the forecast evaluation method rely on the quantile score QSp. Hence,

one may be concerned that the forecast evaluation method is more favourable to kQCRPS than to kQ.

To confirm that this is not the reason for the out-performance of the new method, we carry out the

forecast comparison using a different scoring function. Gneiting (2011, Theorem 9 (c)) shows that all
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Stock n Average k Method p

kQ kQCRPS 95% 99% 99.5% 99.9% 99.95% 99.99%

AAPL 500 14 28 kQ 1.00 0.99 0.98 0.94 0.96 0.12
NP 0.99 0.99 0.97∗∗∗ 0.83∗∗∗ 0.79∗ 0.04

1000 25 43 kQ 0.99∗∗ 0.99∗ 0.97∗ 0.91 0.86 1.18∗∗∗

NP 0.99 1.01 0.99 0.89 0.73∗∗ 0.10

2000 31 63 kQ 0.99∗∗∗ 0.99 0.98∗ 0.97 0.94 1.09∗∗∗

NP 1.00 1.00 0.99 0.94 0.95 0.45∗∗∗

DIS 500 10 28 kQ 0.94∗∗∗ 1.00 1.00 0.91 0.83 0.80∗∗∗

NP 0.99 0.99 1.00 0.90 0.77 0.07∗

1000 10 43 kQ 0.94∗∗∗ 1.00 1.00 0.90 0.82∗∗ 0.42
NP 1.00 1.00 1.00 0.81∗∗ 0.88∗ 0.15

2000 26 58 kQ 0.96∗∗ 0.99 0.99 0.97 0.93∗ 0.84∗∗∗

NP 1.00 0.99 0.99 0.94 0.93∗∗ 0.15

MSFT 500 11 28 kQ 0.96∗∗∗ 0.99 0.99 0.95 0.84 0.76∗∗∗

NP 0.99 0.99 0.96∗∗∗ 1.00 0.85 0.09∗∗

1000 14 39 kQ 0.91∗∗∗ 0.94∗∗∗ 0.98 0.96 0.88 0.41
NP 0.99∗∗∗ 0.98∗∗ 0.99 0.92∗ 0.85∗ 0.09

2000 41 52 kQ 0.99 1.00 1.00 0.96∗∗ 0.93∗∗ 0.87∗∗∗

NP 1.00 1.00 1.00 0.93 0.85 0.18

NKE 500 13 28 kQ 0.99 1.00 0.98 0.87∗ 0.74∗ 1.05∗∗∗

NP 0.99 0.99 0.97∗ 0.87∗ 0.73∗ 0.07∗∗

1000 19 44 kQ 0.99 1.00 1.00 0.91 0.90 1.01∗

NP 0.99 1.00 0.98 0.84∗∗ 0.89 0.22

2000 30 67 kQ 0.97∗∗∗ 0.98∗∗ 0.98 0.98 0.99 1.03∗∗∗

NP 0.99∗∗ 1.00 0.99 0.91 0.95 0.79

PFE 500 8 28 kQ 0.93∗∗∗ 0.98 1.00 1.11 1.06 0.43∗∗∗

NP 0.99 0.99 1.00 1.06 1.00 0.09∗

1000 11 41 kQ 0.90∗∗∗ 0.96∗∗ 0.99 1.01 1.00 0.61∗∗∗

NP 1.00 0.99 1.00 0.99 0.97 0.19

2000 25 64 kQ 0.96∗∗∗ 0.99 1.00 0.95∗∗∗ 0.90∗∗∗ 0.66∗∗∗

NP 1.00∗∗∗ 1.00∗∗∗ 1.02∗∗∗ 0.93 0.96∗∗∗ 0.36

Table 5: Ratios S
kQCRPS

p,QS /S
kQ

p,QS and S
kQCRPS

p,QS /S
NP
p,QS of the average scores for different stocks. Values

below 1 are set in boldface. Average score ratios marked with ∗/∗∗/∗∗∗ indicate statistically significant
score differences at the 10%, 5%, 1%-level. The column “Average k” displays the average values of kQ

and kQCRPS over all (N − n) VaR forecasts.

scoring functions of the form

S(F←(p), x) = [I{y≤F←(p)} − p][g(F←(p))− g(x)]

are strictly consistent for the p-quantile, if g : R→ R is strictly increasing. The quantile score obtains
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for g(x) = x. In a related context, Ziegel et al. (2019) suggest g(x) = exp(x)/[1 + exp(x)]. Carrying

out the forecast comparison with a scoring function based on this latter choice, we find the results of

Table 5 to be confirmed. Indeed, for all but the most extreme p, the score ratios are almost unchanged.

In the interest of space the results are not included in the paper, but are available from the author

upon request.

5 Summary

Extreme value methods have gained significant popularity in economics, finance and beyond. However,

in practical applications it is difficult to tell where ‘the tail begins’, i.e., to determine the number k of

large observations for which extreme value methods can be validly applied. Choosing k thus becomes

a crucial part of applying EVT in practice. In this paper, we introduce a novel idea to choose k based

on proper scoring rules. Such scoring rules have hitherto been mainly applied in forecast evaluation

(Gneiting and Ranjan, 2011). In simple terms, we propose a choice of k that leads to a minimum score

of the Weissman (1978) quantile estimates over probability levels in the right tail. This idea may also

be applied for POT estimation and in the estimation of co-crash probabilities.

We show in simulations that—particularly for heavy-tailed data of primary interest in applications—

our choice kQCRPS often leads to more precise estimates of the tail index than its main competitor kQ.

These more precise tail index estimates directly translate into more reliable (extreme) risk measure

estimates.

In an application to returns on a diversified set of U.S. blue-chip stocks, we find that kQCRPS also

leads to better VaR forecasts in risk management practice. The increased precision of tail estimates

may be explained by the fact that our choice of k provides a better bias-variance trade-off: It tends to

suggest more upper order statistics than kQ (thus decreasing variance), while—at the same time—not

increasing the bias, that may be introduced by using non-tail observations.
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Online Supplemental Appendices

In Appendix A, we complement the simulation results in Section 3 of the main paper. To show that

our method of choosing k also works well for other tail index estimators than the Hill (1975) estimator,

we re-run the Monte Carlo simulations for the popular log-log rank-size estimator due to Gabaix and

Ibragimov (2011). These results are reported in Appendix B.

Appendix A Complementary Simulations

A.1 Estimation of Expected Shortfall

The arguably two most important risk measures in the financial industry are the Value-at-Risk and

the Expected Shortfall (ES). The ES at level p is the average loss given that VaR at level p (VaRp) is

exceeded; formally, ESp = E[X | X > VaRp]. Hua and Joe (2011) show that under (1) ES and VaR

behave similarly far out in the tail, viz.

ESp
VaRp

→ 1

1− γ
, as p→∞.

This motivates the estimator ÊSp(k) = x̂p(k)/(1− γ̂(k)) studied by Hoga (2019b+).

Figure A.1 is the analogue of Figure 1 in the main paper for ES estimation via ÊSp(k). It confirms

the finding that risk measure estimates may be significantly improved by using kQCRPS. For panels

(a1), (b1), (b2) and (c2), where VaR estimates are more precise throughout, the improvements for ES

estimates are even more pronounced.

A.2 Additional Results for VaR Estimation

In the main paper, Figure 1 only compares the VaR estimates x̂p(k
QCRPS) and x̂p(k

Q) for models

(M1), (M2) and (M6). Here, we provide similar figures for the remaining models (M3)–(M5)

and (M7)–(M8). With RMSE ratios mostly above one, Figure A.2 confirms the good performance of

x̂p(k
QCRPS) for models (M3)–(M5). The main patterns of Figure 1 also emerge again. The advantage

of x̂p(k
QCRPS) vis-à-vis x̂p(k

Q) is often particularly marked for ‘small’ p ∈ {0.90, 0.95, 0.975} and ‘large’

p ∈ {0.9995, 0.9999}. Additionally, the advantages become larger, the larger the sample size n and

the smaller α.

Figure A.3 shows the RMSE ratios for the remaining models (M7)–(M8). Table 1 shows that these

models present challenges for kQCRPS for larger α. This is reflected in the VaR estimates x̂p(k
QCRPS),

which are often inferior to x̂p(k
Q) for large p. It is perhaps a bit surprising to find that this is reversed
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Figure A.1: Log-log plots of RMSEp(k
Q)/RMSEp(k

QCRPS) for different values of 1 − p. Here,

RMSEp(k) is the RMSE of ÊSp(k) (k ∈ {kQ, kQCRPS}). Results shown for models (M1), (M2),
and (M6) with indicated α.

for ‘small’ p ∈ {0.90, 0.95, 0.975}. The reason for this is that kQ is—on average—much smaller than

kQCRPS. For instance, for the model in panel (b1) the average kQ is 9.5, 15, 21 for n = 500, 2000, 5000,

respectively. Thus, it does not make sense to use x̂p(k
Q) for p ≤ 1 − kQ/n = 0.981, 0.9925, 0.9958,

which amounts to estimating a more extreme (1− kQ/n)-quantile and then extrapolating ‘backwards’

to the desired less extreme p-quantile. This reverses the logic of the Weissman (1978) estimator. Thus,
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Figure A.2: Log-log plots of RMSEp(k
Q)/RMSEp(k

QCRPS) for different values of 1 − p. Here,
RMSEp(k) is the RMSE of x̂p(k) (k ∈ {kQ, kQCRPS}). Results shown for models (M3)–(M5) with
indicated α.

x̂p(k
Q) is at a disadvantage when estimating quantiles at ‘small’ levels p ∈ {0.90, 0.95, 0.975}.
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Figure A.3: Log-log plots of RMSEp(k
Q)/RMSEp(k

QCRPS) for different values of 1 − p. Here,
RMSEp(k) is the RMSE of x̂p(k) (k ∈ {kQ, kQCRPS}). Results shown for models (M7)–(M8) with
indicated α.
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Appendix B Simulations with the Log-Log Rank-Size Estimator

To introduce the log-log rank-size estimator of Gabaix and Ibragimov (2011), we again consider

X1, . . . , Xn with common d.f. F (·) satisfying (1), i.e.,

1− F (x) = x−1/γL(x) (B.1)

for γ > 0 and slowly varying L(·). As before, the ordered observations are denoted by X(1) ≥ . . . X(n).

The index i in X(i) is consequently a rank. Now apply the logarithm to each side of (B.1) and insert

x = X(i), the empirical (1− i/n)-quantile, to obtain

log

(
i

n

)
≈ log(L(X(i)))−

1

γ
log(X(i)). (B.2)

This relation motivates the regression of log-ranks on log-size in

log(i− 1/2) = a− b log(X(i)). (B.3)

Gabaix and Ibragimov (2011) explain the reason for shifting the ranks by 1/2. An estimate of γ in

(B.2) can be obtained from (B.3) via the inverse of the OLS estimate of b:

b̂(k) = −
∑k

i=1(xi − xk)(yi − yk)∑k
i=1(xi − xk)2

,

where xi = log(X(i)), yi = log(i− 1/2), xk = 1
k

∑k
i=1 xi, yk = 1

k

∑k
i=1 yi and k denotes the number of

tail observations for which (B.1) approximately holds.

The choice of k in the extreme value index estimate γ̂(k) = 1/b̂(k) is again crucial. In the remainder

of this appendix we compare the two choices kQ and kQCRPS. Tables B.1–B.4 are the analogues of

Tables 1–4 for the log-log rank-size estimator.

We draw the following conclusions from Tables B.1–B.4:

1. RMSE: Table B.1 presents even stronger evidence in favour of kQCRPS than Table 1. With a few

exceptions, notably for the t-distribution and the filtered GARCH innovations, using kQCRPS

leads to more precise estimates of γ. Again, the advantage tends to be larger, the heavier the

tail. Comparing the RMSEs of the Hill estimator in Table 1 with those of the log-log rank-size

estimator in Table B.1, we find that most of the time the Hill estimator delivers more precise

estimates for both choices kQ and kQCRPS.

2. Bias: On balance, we find that bias is lower for γ̂(kQCRPS) than for γ̂(kQ) in Table B.2. The

bias of γ̂(kQCRPS) is particularly low for very heavy-tailed data, whereas for γ̂(kQ) this is true

for lighter tails. In comparison with Table 2, bias tends to be smaller for the Hill estimator, but
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 85.0 29.1 81.3 21.5 80.9 17.2 81.3 13.2
3 24.5 10.7 24.0 8.6 21.7 6.9 17.3 5.3
5 14.7 11.9 12.4 9.8 8.8 8.1 6.3 6.5
7 12.4 13.4 9.8 11.3 7.6 9.6 5.6 7.9

Fréchet 1 83.9 27.5 80.7 21.4 82.1 17.3 81.3 13.3
3 25.0 8.2 23.9 6.6 21.3 5.4 16.1 4.1
5 11.9 5.0 8.9 3.9 7.0 3.2 5.1 2.4
7 6.1 3.4 5.3 2.9 3.3 2.2 2.7 1.7

SS 0.5 169 106 172 101 165 85.4 161 66.9
1.0 82.4 28.3 81.0 20.9 81.5 17.4 81.8 13.2
1.5 53.9 17.5 55.6 14.3 52.6 11.7 53.0 8.7
1.9 40.0 24.3 42.6 23.4 42.0 22.1 36.7 19.8

Pareto 1 82.3 27.0 82.8 21.5 80.2 17.0 79.9 13.1
3 24.2 8.1 23.3 6.5 21.4 5.4 16.1 4.0
5 12.1 4.8 9.5 3.9 6.8 3.2 5.2 2.3
7 6.2 3.4 4.3 2.8 3.4 2.2 2.8 1.7

Burr 1 80.4 26.3 82.4 22.2 81.0 17.3 80.2 12.9
3 25.1 8.8 23.7 7.2 21.8 5.7 17.3 4.3
5 13.2 7.5 10.7 6.3 7.3 5.2 5.4 4.1
7 9.7 7.9 7.1 6.8 5.3 5.8 4.0 4.8

ARCH 2.30 19.1 13.5 18.3 11.9 17.7 10.3 17.1 8.3
2.68 16.8 11.7 15.9 10.1 15.2 8.6 14.8 6.9
3.17 14.8 10.5 13.7 8.8 12.4 7.4 11.5 5.9
3.82 12.4 9.5 11.9 8.1 9.8 6.7 9.3 5.3

GARCH 2.03 19.9 16.5 19.7 16.0 19.5 15.1 19.6 13.9
2.98 11.1 10.6 10.6 9.6 10.6 8.5 10.4 7.5
3.96 9.7 9.4 8.9 7.9 8.2 6.6 7.5 5.4
4.99 10.0 9.5 8.2 7.8 7.1 6.6 6.1 5.2

Filtered 5 12.3 11.2 10.1 9.4 7.5 7.8 6.0 6.4
GARCH 7 11.5 13.0 9.2 11.0 7.1 9.5 5.5 7.8

Table B.1: RMSE(×10−2) of γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8) with true
tail index α. Lower values for RMSE are set in boldface.

the differences are slight.

3. Average number of k: Table B.3 and Table 3 show that the average kQCRPS is slightly higher for

the log-log rank size estimator than for the Hill estimator. For instance, for the GARCH model

and n = 5000, the average kQCRPS is between 106 and 113 for the Hill estimator, and 110 and

121 for the log-log rank-size estimator, while the respective numbers for kQ are 13 and 22, and
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 21.3 4.3 19.5 2.9 19.5 2.3 18.3 1.6
3 8.2 6.9 6.7 5.5 4.2 4.3 2.2 3.3
5 8.5 10.4 6.3 8.7 4.3 7.3 2.7 5.9
7 9.9 12.4 7.7 10.7 6.0 9.1 4.4 7.6

Fréchet 1 20.5 4.5 19.0 3.3 18.2 2.3 18.9 1.7
3 5.6 1.3 4.4 0.9 2.4 0.7 0.4 0.5
5 1.7 0.8 0.3 0.6 −0.3 0.4 −0.8 0.3
7 0.3 0.5 −0.0 0.4 −0.4 0.3 −0.7 0.2

SS 0.5 31.8 20.1 34.4 18.4 30.0 12.2 29.9 7.6
1.0 19.5 4.1 19.9 2.7 19.5 2.5 18.6 1.6
1.5 12.4 −4.0 13.1 −3.3 12.3 −2.9 10.9 −2.3
1.9 −10.5 −21.6 −6.5 −21.0 −5.1 −20.0 −6.3 −18.2

Pareto 1 19.6 3.6 20.0 3.0 18.7 1.8 18.9 1.6
3 5.1 0.8 4.4 0.9 2.5 0.5 0.2 0.3
5 1.4 0.5 0.2 0.4 −0.3 0.3 −0.8 0.2
7 0.2 0.3 −0.2 0.3 −0.5 0.2 −0.7 0.1

Burr 1 19.4 3.3 18.7 2.6 18.9 2.1 17.8 1.2
3 6.3 3.3 5.1 2.7 3.5 2.2 1.2 1.6
5 5.2 5.4 3.5 4.7 2.1 3.9 1.0 3.2
7 5.7 6.8 4.3 6.0 3.2 5.2 2.3 4.4

ARCH 2.30 −2.5 1.3 −3.1 1.3 −3.5 1.0 −4.4 0.8
2.68 −0.0 2.7 −0.9 2.4 −1.7 2.0 −2.2 1.5
3.17 1.9 4.2 0.6 3.5 −0.2 2.9 −1.0 2.4
3.82 3.3 5.5 2.4 4.8 0.9 3.9 0.2 3.1

GARCH 2.03 −16.5 −9.0 −17.0 −7.3 −16.9 −5.7 −17.1 −3.9
2.98 −3.6 1.1 −4.6 0.9 −5.1 0.6 −5.2 0.9
3.96 1.7 4.9 0.7 4.1 −0.1 3.3 −0.9 2.7
4.99 4.8 7.2 3.2 5.9 2.1 4.9 1.2 4.0

Filtered 5 7.4 9.8 5.4 8.3 3.8 7.0 2.5 5.8
GARCH 7 9.3 12.1 7.4 10.4 5.8 9.0 4.3 7.5

Table B.2: Bias(×10−2) of γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8) with true tail
index α. Lower absolute values for bias are set in boldface.

23 and 40. Clearly, the classification as a tail observation (through the choice of k) should not

depend on the particular estimator being used by the practitioner. Thus, the choice kQ seems

inferior, as it is much more influenced by the idiosyncrasies of the tail index estimator.

4. Standard deviation of k’s: The standard deviations reported in Table B.4 are increased relative

to those in Table 4, particularly so for large n and large α. Again, the standard deviations are
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 7.0 28 8.6 44 10 66 16 113
3 13 29 18 44 24 66 38 112
5 16 28 22 43 30 63 42 105
7 18 28 23 42 31 62 43 104

Fréchet 1 7.1 28 8.5 44 10 65 15 113
3 12 31 17 47 26 69 43 117
5 16 31 24 46 34 69 53 117
7 18 31 26 46 37 69 57 116

SS 0.5 5.9 21 7.4 29 8.5 42 11 64
1.0 7.1 29 8.5 44 10 65 15 113
1.5 8.4 30 10 46 14 68 25 114
1.9 15 29 23 47 38 73 75 121

Pareto 1 7.0 29 8.6 44 10 66 16 114
3 12 30 17 47 25 70 42 118
5 16 31 24 47 34 69 54 117
7 18 31 26 46 37 69 57 117

Burr 1 6.9 29 8.5 44 10 66 15 113
3 12 30 17 46 25 68 41 117
5 16 30 22 45 32 67 47 113
7 18 29 24 44 33 66 46 111

ARCH 2.30 13 29 16 45 20 67 28 115
2.68 13 29 17 45 22 68 31 115
3.17 14 29 18 45 24 67 33 115
3.82 15 29 20 44 26 66 36 114

GARCH 2.03 14 29 17 45 20 69 23 121
2.98 15 29 19 45 23 67 29 115
3.96 16 28 21 44 26 65 35 113
4.99 17 28 22 43 29 64 40 110

Filtered 5 16 28 23 42 29 63 41 106
GARCH 7 17 28 24 42 31 62 43 103

Table B.3: Average number of k used in γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–(M8)
with true tail index α.

smaller for kQCRPS than for kQ relative to their average values. For instance, while the standard

deviations of kQ and kQCRPS are 22 and 37 for the GARCH(α = 2.03) models with n = 5000, the

respective average values are 23 and 121. This implies a much higher relative standard deviation

of 22/23 = 0.96 for kQ than for kQCRPS, where 27/121 = 0.31.

The simulation results in Tables B.1–B.4 further strengthen the case for the choice kQCRPS. Not

only does kQCRPS lead to more precise estimates of γ again, but this choice also classifies roughly the
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Model α n = 500 n = 1000 n = 2000 n = 5000

kQ kQCRPS kQ kQCRPS kQ kQCRPS kQ kQCRPS

tα 1 8.4 9.7 12 15 17 24 32 43
3 10 10 16 16 25 26 46 49
5 10 10 15 16 24 26 41 48
7 9.5 10 14 16 21 25 36 47

Fréchet 1 8.6 9.7 12 15 17 24 30 43
3 10 9.9 17 16 28 26 52 48
5 11 10 19 16 30 26 54 49
7 11 10 19 16 30 26 54 50

SS 0.5 8.4 10 12 17 15 26 26 45
1.0 8.4 9.7 12 15 18 24 31 43
1.5 9.2 9.7 13 16 22 25 43 47
1.9 12 10 22 16 38 24 70 43

Pareto 1 8.4 9.6 12 15 18 24 31 43
3 10 10 16 16 27 25 51 48
5 11 10 19 16 30 26 54 49
7 12 10 19 17 30 26 54 50

Burr 1 8.4 9.6 12 15 18 24 30 43
3 10 10 16 16 27 26 49 48
5 10 10 17 16 27 26 47 49
7 10 10 16 16 25 26 43 49

ARCH 2.30 9.5 9.9 14 15 21 25 35 46
2.68 9.7 9.8 14 16 21 25 37 46
3.17 10 9.9 15 16 22 25 39 47
3.82 10 10 15 16 23 25 40 47

GARCH 2.03 8.5 9.1 11 14 16 22 22 37
2.98 9.1 9.5 13 15 19 24 31 45
3.96 9.6 9.8 14 15 21 25 36 46
4.99 9.7 10 15 16 23 25 39 47

Filtered 5 10 10 15 16 23 26 40 48
GARCH 7 9.3 10 14 16 21 26 36 47

Table B.4: Standard deviation of k’s used in γ̂(k) with k chosen as kQ or kQCRPS for models (M1)–
(M8) with true tail index α.

same number of observations as belonging to the tail for different tail index estimators.

The analogues of Figures 1–2 and Figures A.1–A.3 are largely similar for the log-log rank-size

estimator and add no additional insight. Hence, we omit these plots, which are available upon request.
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