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1. Introduction

Forecasting in economics is challenging for three major reasons. First, the existence

of many potential predictors can result in a huge number of potential models. While

regressions with many predictors may overfit, small models may miss important predic-

tors. This leads to the need for model selection strategies. Second, a useful forecasting

model may change over time. For instance, some variables may predict well in reces-

sions while others may predict well in expansions or the set of relevant predictors may

change between certain events such as the Great Moderation. This further complicates

the statistical problem as a researcher needs to select one model in each period. Third, in

case of parameter change the marginal effect of predictors may change over time. How-

ever, modeling such change will increase the risk of overfitting the data, resulting in poor

out-of-sample predictions. Recently, a growing literature addresses these points by using

dynamic model averaging (DMA), proposed by Raftery et al. (2010). Koop and Korobilis

(2012) introduce DMA to the economic literature by forecasting inflation. They find a

favorable forecasting performance of DMA over simple benchmark regressions and more

sophisticated approaches. Studies that use DMA to forecast a variety of different eco-

nomic time series include: Buncic and Moretto (2015), Drachal (2016) and Naser (2016)

forecasting commodities, Bruyn et al. (2015), Beckmann and Schüssler (2016) and Byrne

et al. (2018) forecasting exchange rates, Liu et al. (2015) forecasting stock returns, Gupta

et al. (2014) forecasting foreign exchange reserves, Bork and Moller (2015), Risse and Kern

(2016) and Wei and Cao (2017) forecasting house price growth, Aye et al. (2015) and Baur

et al. (2016) forecasting gold prices, Koop and Korobilis (2011) and Filippo (2015) fore-

casting inflation and Wang et al. (2016) and Liu et al. (2017) forecasting realized volatility.

While conventional DMA is well established in the economic literature, the aim of this

paper is to extend this framework by introducing adaptive learning from model space

(ALM). The conventional DMA approach consists of independently estimating K differ-

ent time-varying parameters (TVP) models. In order to combine the different models,

their individual forecasts are weighted by time-varying inclusion probabilities. The time-

varying inclusion probabilities depend on the most recent forecasting performance of each

model and allow that the weight placed on each model may change over time. However,

as each model is estimated independently and the information provided by the other

models and the information provided from the time-varying inclusion probabilities is left

unexploited in the process. In order to exploit the information in the estimation of the

individual TVP models, this paper proposes to not only average over the forecasts but, in

addition, to also dynamically average over the time-varying parameters. This is done by

approximating the mixture of individual posteriors with a single posterior in each period.

By doing so, the information of all model posteriors is summarized in one single posterior,

1



which is then used in the following period as the prior for each of the individual models.

This is attractive because it is often argued that pooling information is optimal relative

to pooling forecasts, as the latter introduces an efficiency loss, see Timmermann (2006).

For instance it may be the case that at the beginning of the sample most weight is placed

on parsimonious models while later in the sample more weight is place on models with a

larger set of predictors. However, these models cannot benefit from this information when

estimated independently. In contrast, when averaging over the time-varying parameters

some of the variables in the larger models may be shrunk to zero at the beginning of the

sample by exploiting the information that they were not relevant at this time.

The relevance of this extension is illustrated in three empirical applications. In the first

application, both conventional DMA and ALM are used to forecast US inflation one quar-

ter and one year ahead. Under different settings, ALM compares favorably to conventional

DMA. The second application considers forecasting nominal and real US consumption

expenditures one quarter and one year ahead. For nominal and real consumption expen-

ditures ALM outperforms conventional DMA. Finally, the third application forecasts five

major US end-of-month (log) exchange rate returns one month and one year ahead. It

turns out that ALM delivers more precise forecasts than the conventional DMA for all

five countries. The finding that ALM yields improvements in out-of-sample forecasting

holds in particular for the long horizon in all three applications.

The remainder of this paper is organized as follows. Section 2 lays out and discusses

the econometric framework. Section 3 presents the empirical findings and the last section

concludes.

2. Econometric Framework

2.1. Baseline Dynamic Model Averaging

Consider a set of time-varying-parameters (TVP) models Mk, k = 1, . . . , K, which can

be written as

yt = z
(k)
t θ

(k)
t + ε

(k)
t , (1)

θ
(k)
t = θ

(k)
t−1 + η

(k)
t , (2)

where ε
(k)
t ∼ N(0, H

(k)
t ) and η

(k)
t ∼ N(0,Q

(k)
t ). The predictor vector z

(k)
t for each

model can be of different dimension and the predictor set of the different models net not
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to overlap. Let Lt = k if the process is modelled by model Mk at time t. Conditioning

on Lt = k, the state vector θ
(k)
t of each model can be estimated independently using

the Kalman filter. Assuming that θ
(k)
t−1|Lt−1 = k,yt−1 ∼ N(θ̂

(k)

t−1|t−1,Σ
(k)
t−1|t−1), Kalman

filtering proceeds using

θ
(k)
t |Lt−1 = k,yt−1 ∼ N(θ̂

(k)

t|t−1,Σ
(k)
t|t−1), (3)

where

θ̂
(k)

t|t−1 = θ̂
(k)

t−1|t−1 (4)

and

Σ
(k)
t|t−1 = Σ

(k)
t−1|t−1 +Q

(k)
t . (5)

Followed by the updating equations to complete the estimation

θ
(k)
t |Lt = k,yt ∼ N(θ̂

(k)

t|t ,Σ
(k)
t|t ), (6)

where

θ̂
(k)

t|t = θ̂
(k)

t|t−1 + Σ
(k)
t|t−1z

′(k)
t (H

(k)
t + z

(k)
t Σ

(k)
t|t−1z

′(k)
t )−1(yt − z(k)t θ̂

(k)

t|t−1) (7)

and

Σ
(k)
t|t = Σ

(k)
t|t−1 −Σ

(k)
t|t−1z

′(k)
t (H

(k)
t + z

(k)
t Σ

(k)
t|t−1z

′(k)
t )−1z

(k)
t Σ

(k)
t|t−1. (8)

In order to run the Kalman filter, one needs to know the variance H
(k)
t of the observation

equation and the covariance matrix Q
(k)
t of the transition equation. Estimating or simu-

lating H
(k)
t and Q

(k)
t running MCMC methods for each model would be computationally

demanding. Therefore, it is convenient to use approximations that allow to estimate each

model with only one iteration of the Kalman filter. The covariance matrix Q
(k)
t appears

in the Kalman Filter only in equation (5). Following Raftery et al. (2010), equation (5)

is replaced by

Σ
(k)
t|t−1 =

1

λ
Σ

(k)
t−1|t−1 (9)

or, equivalently, Q
(k)
t = (1 − λ−1)Σ

(k)
t−1|t−1, where λ is called the forgetting factor with

0 < λ ≤ 1. Forgetting factor approaches have a long tradition in the state space literature

and a detailed motivation is given , e.g., by Fagin (1964) and Jazwinsky (1970). The

forgetting factor implies that observations which are lagged by i periods receive the weight

λi. The idea is similar to applying a rolling window regression with a window size of 1
1−λ .

Typically the value for λ is set close to one, in order to favor a gradual evolution of

coefficients. Raftery et al. (2010) set λ = 0.99. For quarterly data, this means that
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observations from five years ago receive around 80% as much weight as observation of the

last period. Setting λ = 0.95 implies that observations five years ago receive only 35%

as much weight as the observation of the last period and would allow for higher degrees

of parameter change. This suggests that the range of plausible values should be close to

one. In section 2.3 a way to estimate λ over a small grid of values is discussed. With

this simplification there is no need to estimate Q
(k)
t anymore. To estimate each model

with only one Kalman filter iteration requires a method for estimating H
(k)
t . Following

Koop and Korobilis (2012), H
(k)
t is estimated by using an Exponentially Weighted Moving

Average (EWMA)

H
(k)
t = κH

(k)
t−1 + (1− κ)(yt − z(k)t θ̂

(k)

t|t−1)
2, (10)

with 0 < κ ≤ 1. This estimator is a weighted average of H
(k)
t−1 and the squared residuals

at time t, with κ a decay factor, similar to the forgetting factor λ, with effective window

size κ
2
− 1. Therefore, the value for κ is also typically set close to one. RiskMetrics

(1996) set κ = 0.97 for monthly data and Koop and Korobilis (2012) set κ = 0.98 for

quarterly data. See RiskMetrics (1996) for general properties of the EWMA estimator.

After having replaced Q
(k)
t and H

(k)
t with equations (9) and (10), all results are available

in closed form and only one iteration of the Kalman filter is required for the estimation

of each model. As a next step, a way to combine the models is needed. Raftery et al.

(2010) propose to calculate time-varying model probabilities by using the following model

prediction equation with forgetting factor α:

πk|t−1 =
παk|t−1∑K
l=1 π

α
l|t−1

(11)

and a model updating equation

πk|t =
πk|t−1pk(yt|yt−1)∑K
l=1 πl|t−1pl(yt|yt−1)

, (12)

where pk denotes the predictive likelihood of model k. The predictive likelihood is a

measure of forecasting performance and is defined as the predictive density evaluated at

the actual outcome yt. The predictive density is given by

yt|Lt−1 = k,yt−1 ∼ N(z
(k)
t θ̂

(k)

t|t−1, H
(k)
t + z

(k)
t Σ

(k)
t|t−1z

′(k)
t ). (13)

In order to understand the role of the forgetting factor α, writeπt|t−1,k as

πk|t−1 ∝
t−1∏
i=1

[pk(yt−i|yt−i−1)]α
i

. (14)

Thus, the model probabilities change over time according to the forecasting performance
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(measured by the predictive likelihood) in the recent past of each model. The forgetting

factor α discounts the past forecasting performance in the same fashion as the forgetting

factor λ and therefore controls the frequency of model change. As a special case, α = 1

corresponds to conventional model averaging using the marginal likelihood. Hence, similar

considerations as for λ apply and suggest to set α close to one. Section 2.3 discusses a

way to estimate α. Now, given the model probabilities we can forecast using dynamic

model averaging (DMA) via

ŷDMA
t =

K∑
l=1

πk|t−1z
(k)
t θ̂

(k)

t|t−1 (15)

or using dynamic models selection (DMS) as

ŷDMS
t = z

(k∗)
t θ̂

(k∗)

t|t−1, (16)

where k∗ refers to the model with the maximum model probability at time t − 1. Thus,

each model is estimated independently using the Kalman filter and then either the fore-

cast of each individual model is weighted by its probability at period t− 1 or the forecast

of one model is selected with the highest probability at time t− 1.

2.2. Adaptive learning from model space

The aim of this paper is to go one step further by not only performing DMA over the

individual forecast of each model but also doing DMA over the time-varying model param-

eters θ
(k)
t . Using conventional DMA, each model is estimated independently and cannot

exploit the information in the other models. By averaging over θ
(k)
t each model is not

estimated independently anymore and uses the information of all other K − 1 models.

This is attractive because it may be the case that at the beginning of the sample most

weight is placed on parsimonious models while later in the sample more weight is placed

on models with a larger set of predictors. However, these models cannot benefit from this

information when estimated independently. In contrast, when averaging over θ
(k)
t , some

of the variables in the larger models may be shrunk to zero at the beginning of the sample

by exploiting the information that they were not relevant at this time.

In order to average over θ
(k)
t at each period t, a single Gaussian q(θt) = N(θt|θt|t,Σt|t)

is used to approximate a mixture of Gaussians p(θt) =
∑K

k=1 πk|tN(θt|θ̂
(k)

t|t ,Σ
(k)
t|t ).1 The

Kullback-Leibler divergence (KL) is a measure of the dissimilarity between two distribu-

1Note that the vector z
(k)
t may include a different set of variables for each model k. Hence, θ̂

(k)

t|t may
also correspond to a different set of variables. In order to account for this, zeros can be placed in the

corresponding elements of z
(k)
t in case certain variables are not included.
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tions. Therefore, the two moments θt|t and Σt|t can be determined by minimizing the

Kullback-Leibler divergence between q(θt) and p(θt) with respect to θt|t and Σt|t. The

minimization problem is given by q = arg minqKL(q||p) and the solution to this problem

is given by

θt|t =
K∑
k=1

πk|tθ̂
(k)

t|t , (17)

Σt|t =
K∑
k=1

πk|t(Σ
(k)
t|t + (θ̂

(k)

t|t − θt|t)(θ̂
(k)

t|t − θt|t)′). (18)

In the graphical model literature, this is called weak marginalization, as it preserves

the first two moments, see Lauritzen (1992). The center of the distribution q(θt) is just

the weighted average of the mean θ̂
(k)

t|t from all individual models. Thus, models with a

higher posterior probability receive more weight. The total variance Σ
(k)
t|t arises from two

sources of variability. The first source is the weighted average of the covariance-matrix

Σ
(k)
t|t of the individual models and reflects the uncertainty about θt which comes from

the estimation of the individual models. And the second source is the weighted average

of the squared difference between θ̂
(k)

t|t and θt|t and reflects the uncertainty through the

heterogeneity between the different models. In order to complete estimation, the pos-

terior q(θt) serves as a prior for each model in the upcoming period and θ̂
(k)

t−1|t−1 and

therefore Σ
(k)
t−1|t−1 in equation (4) and (5) are replaced by θt−1|t−1 and Σt−1|t−1. Thus,

the time-varying parameter vector θt is estimated by exploiting the information of all K

models and its elements are shrunken towards the parameters of models that receive a

higher weight. For example, they can be shrunk towards zeros, if models that include

the corresponding variable receive only little weight or they may be shrunken towards the

value they have in models which receive a high weight.

2.3. Estimation of hyperparamter

In order to estimate a model, one has to determine the values of the hyperparameters λ,

κ and α. Previous consideration suggests to set them close to one. Furthermore, the two

hyperparamters λ and κ are estimated over a grid of values by treating different values as

different models, i.e. by setting λ = λ(k) and κ = κ(k). Thus, if models discounting past

data more strongly yield a better forecasting performance (measured by the predictive

likelihood) in the recent past (which is controlled by α) a higher weight is placed on them.

However, it is not possible to estimate the forgetting factor α in this fashion. Fortunately,

Beckmann and Schüssler (2016) provide a way to integrate (sum) over a grid of values

αv ∈ (α1, α2, . . . , αa) by replacing equation (11) and (12) with

6



πk|t−1 =
a∑
v=1

πk|t−1,αvp(αv|It−1), (19)

where πk|t−1,αv =
παv
k|t∑K

l=1 π
αv
l|t

and

πk|t =
a∑
v=1

pk(yt|yt−1)πk|t−1,αv∑K
l=1 pl(yt|yt−1)πk|t−1,αv

p(αv|It). (20)

The posterior at time t of a particular grid point of the forgetting factor α is given by

p(αz|It) =

∑K
k=1 pk(yt|yt−1)πk|t−1,αzp(αz|It−1)∑a

v=1

∑K
l=1 pl(yt|yt−1)πl|t−1,αvp(αv|It−1)

. (21)

3. Empirical Applications

3.1. Forecasting Inflation

This section considers one quarter and one year ahead forecasts for core inflation as mea-

sured by the Personal Consumption Expenditure (PCE) deflator. A standard set of vari-

ables is considered as potential predictors, reflecting the major theoretical explanations of

inflation as well as variables which have been found to be useful in forecasting inflation in

other studies. Potential predictors are the percentage change in the Dow Jones Industrial

Average, the percentage change in employment, the log of housing starts, University of

Michigan survey of inflation expectations, the percentage change in the money supply

(M1), the percentage change of Spot Crude Oil Price (WTI), the change in the Institute

of Supply Management index (Manufacturing), the percentage change in real personal

consumption expenditures, the percentage change in real GDP, the percentage change in

real Gross Private Domestic Investment (Residential), the spread between the ten year

and three month Treasury bill, the three month Treasury bill and the unemployment rate.

In addition, following Koop and Korobilis (2012), each model contains one intercept and

two lags of inflation. All variables used are in quarterly frequency, seasonally adjusted

and are obtained from the FRED database of the Federal Reserve Bank of St. Louis.

The data are observed for the period 1978Q2 to 2016Q3 and the period from 1992Q1 to

2016Q3 is used to evaluate the out-of-sample forecast performance.

Based on this set of predictors, the performance of conventional DMA and ALM is

compared. Furthermore, the performance for different choices of the forgetting factors

is investigated. Koop and Korobilis (2012) set κ = 0.98 and focus on a modest range

for the forgetting factors, i.e. α, λ ∈ (0.95, 0, 99), which they find to deliver a favorable

forecasting performance over simple benchmark regressions and more sophisticated ap-

proaches. Thus, this set of values is used to forecast inflation. In order to not just rely
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on one value for the whole period, this section also considers estimating α ∈ (0.95, 0.99)

and λ ∈ (0.95, 0.99) dynamically. This allows the framework to switch between a gradual

change in both coefficients and models (α = λ = 0.99), a more rapid change in both

coefficients and models (α = λ = 0.95) or a mix of the two over time.

Table A.1 contains the results for the one quarter and one year ahead forecasting perfor-

mance in terms of the root mean squared forecast error (RMSFE) and in terms of the mean

absolute forecast error (MAFE). In addition, it shows the results of the Diebold-Marion

test (DM-test) proposed by Diebold and Marion (1995) in order to investigate whether the

forecasting errors of the conventional DMA approach differ statistically significant from

those obtained from the ALM approach. ALM and conventional DMA deliver similar

forecasting errors in all settings for one quarter ahead inflation. But for one year ahead

ALM delivers statistical significantly smaller forecasting errors. Furthermore, the results

show that allowing for a more rapid change between models and in coefficients yields bet-

ter predictions. However, estimating the forgetting factors seems to be a useful strategy

in order to avoid poor forecasts due to a poor selection of values for the forgetting fac-

tors. Figure B.1 compares the cumulative sum of the absolute forecast error over time of

ALM and conventional DMA and DMS. This allows to assess the forecasting performance

over time. The absolute forecast errors grow roughly linearly over time for both horizons

and all three approaches. Only after the financial crisis a big jump can be observed for

all setups. Hence, one can conclude that the forecast errors are fairly stable over time.

Furthermore, it can be seen that the one year cumulative sum of absolute forecast errors

after the financial crisis is lower for ALM compared to the conventional approach.

3.2. Forecasting Consumption Expenditures

This section compares the forecasting performance of ALM and conventional DMA for

nominal and real consumption expenditures. As potential predictors, the percentage

change in the Dow Jones Industrial Average, the percentage change in employment, the

log of housing starts, the percentage change in the money supply (M1), University of

Michigan survey of inflation expectations, University of Michigan survey of consumer sen-

timent, the spread between the ten year and three month Treasury bill, the three month

Treasury bill, the unemployment rate, the inflation rate and (real) disposable income are

used. In addition, each model contains one intercept and two lags of consumption expen-

ditures and the same grid of forgetting factors is used for the estimation as in the inflation

application. All variables used are quarterly, seasonally adjusted and are obtained from

the FRED database of the Federal Reserve Bank of St. Louis. The data are observed for

the period 1978Q2 to 2016Q3 and the period from 1992Q1 to 2016Q3 is used to evaluate

the out-of-sample forecast performance.
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The results turn out to be similar to the ones obtained for inflation. Table A.2 shows

that ALM and conventional DMA deliver similar forecasting errors for one quarter ahead

consumption expenditures and for one year ahead, ALM delivers smaller forecasting errors.

Moreover the DM test reveals that the difference between the squared forecast errors is

statistically significant for one year ahead predictions. Figure B.2 shows a similar pattern

for the cumulative sum of the absolute forecast errors for the consumption expenditures

compared to these obtained for inflation. Again, the absolute forecast errors grow roughly

linearly over time for both horizons and all three approaches with the exception of the

period after the financial crisis. And again, while the cumulative sum of the absolute

forecast errors is similar for the short horizon, for the long horizon the cumulative sum of

the absolute forecast errors obtained from the ALM approach are below the ones obtained

from conventional DMA for the entire period.

3.3. Forecasting Exchange Rates

This section considers one month and one year ahead forecasting of five major US end-

of-month (log) exchange rate returns. The five different countries are Canada, Denmark,

the United Kingdom, Japan and Sweden. The monthly data range from 1975M2 to

2017M4 and the forecasting results are obtained after a trainingperiod of 50 months.

Four regressors, based on economic theory, in addition to an intercept are considered as

potential predictors. The first regressor is based on the uncovered interest parity condition

(UIP ) and is defined as

UIPt = it − i∗t , (22)

where it denotes the nominal interest rate and i∗t is the foreign nominal interest rate

(measured by the money market rate and obtained from the IFS database). The second

regressor is based on the deviation from the purchasing power parity condition (PPP )

and is defined as

PPPt = pt − p∗t − st, (23)

where pt denotes the log of the domestic price level (measured as the consumer price

index and obtained from the FRED database), p∗t the log of foreign price level and st

denotes the log of the nominal exchange rate (measured as end-of-period exchange rates

and obtained from the FRED database). The third regressor is based on the asymmetric

Taylor (1993) rule (ART ) and is defined as

ATRt = 1.5(πt − π∗t ) + 0.1(gt − g∗t ) + 0.1(st + p∗t − pt), (24)
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where πt is the domestic inflation rate, π∗t is the foreign inflation rate, gt is the domestic

output gap and g∗t is the foreign output gap. The output gap is measured as the deviation

of real output (measured by the industrial production and obtained from the FRED

database) from an estimate of potential output calculated using the Hodrick and Prescott

(1996) filter. The parameter values (1.5, 0.1, 0.1) are a standard choice in the literature,

due to Molodtsova and Papell (2009). The last regressor is based on the deviation form

the monetary fundamentals (MF ) and is defined as

MFt = (mt −m∗t )− (prodt − prod∗t )− st, (25)

where mt is the log of the domestic money supply (measured as M1 if available and

otherwise as M3 and obtained from the OECD database), m∗t is the log of the foreign

money supply and prod
(∗)
t is the log of the domestic (foreign) industrial production.

For the estimation of the two forgetting factors α and λ a wider range as before is con-

sidered, i.e. α, λ ∈ (0.80, 0.90, 0.95, 0.99, 1), which in one extreme nests the special case of

constant parameter models (λ = 1) and no model change (α = 1) and in the other extreme

allows for a very rapid change in both coefficients and models (α = λ = 0.80). The wider

grid allows the predictive information in macroeconomic fundamentals for exchange rate

returns to change fast over time, as suggested by Beckmann and Schüssler (2016). For the

decay factor κ a tight grid around the value 0.96 (which is recommended by RiskMetrics

(1996) for monthly data), i.e. κ ∈ (0.95, 0.96, 0.97, 0.98, 0.99), is considered.

Table A.3 displays the results for the one month and one year ahead forecasting per-

formance. The results show a clear pattern. It turns out that ALM delivers a better

forecasting performance for all five countries than conventional DMA and the difference

in forecasting performance is statistically significant for one year ahead predictions in

all cases and in most cases for one month ahead predictions. Figure B.3 compares the

cumulative sum of the absolute forecast error over time of ALM and conventional DMA

and DMS. The cumulative sum of absolute forecast errors for one month grows roughly

linear over time. In contrast, the cumulative sum of the absolute forecast error of one year

exhibits some jumps over time. This shows that the absolute forecast errors of one year

ahead are less stable than for one month ahead. Moreover, while for the short horizon the

cumulative sum of absolute forecast errors looks very similar for all three approaches, for

the long horizon the cumulative sum of absolute forecast errors is smaller for ALM than

for conventional DMA or DMS for the entire sample. Furthermore, ALM exhibits fewer

and smaller jumps than conventional DMA or DMS.
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4. Conclusion

DMA has been used extensively for the purpose of economic forecasting as it addresses

dynamically both model and parameter uncertainty. This paper extends this framework

by considering ALM. ALM dynamically averages not only over the forecasts of the indi-

vidual models but, in addition, dynamically averages over the time-varying parameters.

Therefore it exploits the information of all models in the estimation of the time-varying

parameters. This is done by approximating the mixture of individual posteriors with a

single posterior, which is then used in the upcoming period as the prior for each of the

individual models. The relevance of this extension is illustrated in three empirical appli-

cations involving US inflation, US consumption expenditures and five major US exchange

rate returns. It turns out that ALM leads to improved out-of-sample predictions in all

applications.
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Appendix A. Tables

Table A.1: Forecasting performance for one quarter and one year inflation

h = 1 h = 4

Model Hyerparamter RMSFE MAFE RMSFE MAFE

DMA grid 0.35 0.21 1.10*** 0.84

DMS grid 0.40 0.24 1.09*** 0.86

ALM grid 0.36 0.23 1.00 0.80

DMA 0.99 0.37 0.22 1.22*** 0.92

DMS 0.99 0.36 0.23 1.27*** 0.96

ALM 0.99 0.35 0.22 1.05 0.82

DMA 0.95 0.36 0.23 1.08*** 0.83

DMS 0.95 0.40 0.25 1.22*** 0.97

ALM 0.95 0.37 0.23 1.00 0.80

The table shows the RMSFE and MAFE in percentage points for three

different settings of the forgetting factor α (controls the change between

models) and λ (controls the change in coefficients). In the first (α =

λ = 0.95), in the second (α = λ = 0.99) and in the third both are

estimated from a small grid α, λ ∈ (0.95, 0.99). The DM test calculates

the statistic for the null hypotheses of equal squared forecast errors

between conventional DMA/DMS and ALM. Asterisks (*10%, **5%,

***1%) denote the level of significance at which the null hypotheses are

rejected.
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Table A.2: Forecasting performance for one quarter and one year consumption expendi-
tures

h = 1 h = 4

Model Variable RMSFE MAFE RMSFE MAFE

DMA nominal 0.59 0.38 2.36*** 1.54

DMS nominal 0.59 0.38 2.75*** 1.74

ALM nominal 0.63 0.38 2.02 1.23

DMA real 0.42 0.33 1.64*** 1.25

DMS real 0.44 0.34 1.68*** 1.29

ALM real 0.42 0.32 1.42 1.04

The table shows the RMSFE and MAFE in percentage points for

nominal and real US consumption expenditures. The DM test

calculates the statistic for the null hypotheses of equal squared

forecast error between conventional DMA/DMS and ALM. Aster-

isks (*10%, **5%, ***1%) denote the level of significance at which

the null hypotheses are rejected.
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Table A.3: Forecasting performance for one month and one year exchange rate

h = 1 h = 12

Model Country RMSFE MAFE RMSFE MAFE

DMA Canada 2.12* 1.50 11.69*** 7.59

DMS Canada 2.24** 1.57 13.14*** 8.26

ALM Canada 2.04 1.45 7.13 5.37

DMA Denmark 3.17* 2.40 21.21*** 14.81

DMS Denmark 3.35*** 2.51 21.71*** 15.65

ALM Denmark 3.10 2.39 12.39 10.33

DMA United Kindom 2.99 2.22 15.63*** 12.35

DMS United Kindom 3.00 2.24 16.30*** 12.67

ALM United Kindom 2.97 2.24 11.06 08.62

DMA Japan 3.42* 2.57 20.93*** 14.85

DMS Japan 3.59 2.70 13.14*** 16.11

ALM Japan 3.28 2.49 12.39 10.03

DMA Sweden 3.23 2.44 17.90*** 13.35

DMS Sweden 3.43*** 2.54 19.98*** 14.69

ALM Sweden 3.21 2.41 13.48 10.82

The table shows the RMSFE and MAFE in percentage points for five ma-

jor US exchange rates returns. The DM test calculates the statistic for

the null hypotheses of equal squared forecast errors between conventional

DMA/DMS and ALM. Asterisks (*10%, **5%, ***1%) denote the level of

significance at which the null hypotheses are rejected.
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Appendix B. Figures
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Figure B.1: Cumulative sum of absolute forecast errors for inflation.
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Figure B.2: Cumulative sum of absolute forecast errors for consumption expenditures.
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Figure B.3: Cumulative sum of absolute forecast errors for exchange rates.
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