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1. Introduction

The Phillips curve has served as an important tool in macroeconomics for explaining and

forecasting inflation in the US over the past five decades. In the original Phillips curve,

inflation depends on lags of inflation and the unemployment rate. In order to obtain a

better understanding and potentially more precise forecasts, a large literature extends

the Phillips curve with additional explanatory variables. Influential papers include Stock

and Watson (1999), Atkeson and Ohanian (2001), Ang et al. (2007), Stock and Watson

(2007) and Groen et al. (2013). Forecasting inflation is crucial, e.g., for central banks, but

at the same time challenging. One difficulty arises from the problem of which additional

variables to include in the Phillips curve. While the original Phillips curve is likely to miss

some important predictors, an augmented Phillips curve with too many predictors bears

the risk of overfitting the data, leading to imprecise out-of-sample predictions. This raises

the question of which predictors are relevant. However, the relevance of the predictors

may change over time. In this case, only asking if a variable is important or not is not

addressing the right question. A researcher may not be interested in assessing whether a

variable is important, but rather when it is.

This paper addresses the question of which predictor is relevant by following Korobilis

(2013a) and considers Bayesian variable selection in the Phillips curve context. Koro-

bilis (2013a) provides an algorithm for stochastic variable selection. The key idea is to

introduce an indicator for each predictor, which determines if a variable is included in

the model. Each indicator is drawn from a Bernoulli distribution in a Gibbs sampler

scheme. By doing so, it is possible to calculate variable inclusion probabilities to assess

the importance of single predictors in determining inflation. However, a potential draw-

back is that the set of indicators is assumed to be constant over time. Thus, the Bernoulli

approach is unable to account for model change over time, which is desirable if the set of

relevant predictors changes over time. The importance of changing predictors over time

is documented by, inter alia, Stock and Watson (2010), who find that most predictors for

inflation improve forecast performance only in some specific time periods. Therefore, it

may be empirically important for predictors to change over time. Conventional hypothesis

testing approaches designed for constant parameter models are also not capable to allow

for this, as they only test whether a restriction holds for all time periods or never.1 The

main contribution of this paper is to tackle this problem by introducing a novel modeling

approach called Markov Dimension Switching (MDS). The MDS model can be seen as an

1Furthermore, the Bayesian methods used in this paper have the advantage that they allow for a formal
treatment of model uncertainty. Using hypothesis tests to select a parsimonious model ignores model
uncertainty, as the selected model is assumed to be the one which generated the data. Treating one
model as if it were the “true” model and ignoring the huge number of other potential models may be
seen as problematic.

1



extension of the Bernoulli model. In the MDS model each indicator follows a Markov-

switching process and thus allows for changing predictors over time. Hence, this approach

allows for the calculation of time-varying variable inclusion probabilities to shed light on

the question which variables are important in determining inflation at different times.

The relevance of this extension is illustrated by using the Bernoulli and the MDS ap-

proach to assess the importance of the predictors for one quarter and one year inflation.

Most important predictors for one quarter turn out to be inflation expectations, the

percentage change of the oil price and the Treasury bill rate. The unemployment rate,

inflation expectations, the Treasury bill rate and the number of newly built houses turn

out to be the most important predictors for one year inflation. The relevant variables

show a sizable degree of time variation, which the Bernoulli approach can not account

for, highlighting the benefit and importance of the proposed MDS approach of this paper.

In particular MDS reveals that the relevance of inflation expectations, unemployment and

house prices for the one year horizon changes abrupt over time, which would be difficult

to capture for existing methods which assume a gradually change of the relevance of

predictors. From an economic perspective it is particular interesting that the relevance

of unemployment rate changes that rapidly as it has long been assumed that economic

policymakers face a trade-off between unemployment and inflation. This result however

suggests that this inverse relation might not be stable over time and that a break down

of the Phillips curve may only be temporary. Furthermore, this paper investigates the

forecasting performance of both approaches. It turns out that the MDS approach exhibits

a better forecasting performance than the Bernoulli approach for one quarter and one year

inflation. An additional finding is that the forecasting performance of the MDS approach

is competitive in comparison with a range of other plausible approaches.

The remainder of this paper is organized as follows. Section 2 lays out and discusses

the econometric framework. Section 3 presents the empirical findings and the last section

concludes.

2. Markov Dimension Switching

The Phillips curve serves as a starting point and motivation for many models that forecast

inflation. In the original Phillips curve, inflation depends only on the unemployment rate

and lags of inflation. Including additional predictors, as Stock and Watson (1999) among

many others do, leads to the so-called generalized Phillips curve

πt+h = α +

p−1∑
j=0

φjπt−j + xtβ + εt+h, (1)
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where xt is a 1×q vector of exogenous predictors, πt+h = log(Pt+h)−log(Pt), Pt denotes

the price level and εt ∼ N(0, σ2
t ). The number of parameters may be large relative to

the number of observations, as in many macroeconomic applications. Estimation of the

Phillips curve in this case may cause imprecise estimation and overfitting (i.e., the model

fits the noise in the data, rather than finding the pattern useful for forecasting). Both,

imprecise estimation and overfitting translate into inaccurate out-of-sample predictions.

Hence, it is important to identify the truly relevant predictors out of a set of many po-

tentially relevant predictors. To do so, this paper follows Korobilis (2013a) and considers

Bayesian variable selection in the Phillips curve context by introducing m = q + p + 1

indicators γ = (γ1, . . . , γm). The model can now be written as

πt+h = (zt � γ)θ + εt+h, (2)

where zt = (1, πt, . . . , πt−p+1,xt), θ = (α, φ0, . . . , φp−1,β
′)′ and � denotes elementwise

multiplication. Hence, if γi = 1, the ith variable is included in the model and if γi = 0, it is

not. By sampling the indicators from their posterior, all 2m possible variable combinations

can be considered and estimated in a stochastic manner. A potential drawback, however,

is that the indicators are constant over time. Thus, a predictor is either included or

excluded from the model for all periods, which is undesirable if the set of predictors

changes over time. To address this problem, this paper introduces MDS to allow the

indicator variables to change over time. In the MDS each indicator variable γi follows a

first-order Markov-switching process Si,t and therefore γ now has a time index t:

πt+h = (zt � γt)θ + εt+h, (3)

where γt = (S1,t, . . . , Sm,t). Each Markov switching process Si,t can take on the value one

or zero and is characterized by a 2 × 2 transition matrix µi, where µkj,i = Pr(Si,t+1 =

j|Si,t = k), k = 0, 1 and j = 0, 1.2 If Si,t = 1, the ith variable is included in the model at

period t and if Si,t = 0, it is not. Therefore, the means of the posterior draws of Si,t can

be interpreted as a time-varying variable inclusion probability in this modeling context.

Furthermore, note that keeping θ constant does not imply that a certain variable has either

an impact of zero or an impact given by θ. This is because the time-varying inclusion

probabilities introduce a time-varying data based shrinkage on the coefficients. Therefore,

MDS may avoid overfitting and hence can be a useful tool for forecasting. In contrast,

estimating θ in a time-varying manner bears a high risk of overfitting and can empirically

only poorly approximate changing predictors by allowing coefficients to be estimated as

2The Markov mixture modeling approach allows that the probability of switching depends on the current
state of the stochastic process, which is not the case for i.i.d. mixture models, but may be useful to
model dependence over time and allows to formulate different prior beliefs about the the frequency of
dimension switching and the level of sparsity in the model, see section 2.1. The i.i.d. case is however
nested as a special case of the Markov mixture approach.
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being approximately zero. Furthermore, models with time-varying parameters typically

assume a gradually change in parameters and therefore are not well suited to capture

abrupt changes in the relevance of predictors.

2.1. Gibbs Sampler

This section describes the Gibbs Sampler, which allows to draw from the posterior distri-

bution of the Bernoulli and the MDS model.

1. Sample θ from the following density

θ|γ1:T , z1:T , π1+h:T+h, σ
2
1+h:T+h ∼ N(θ,Ω), (4)

with

θ = Ω

(
V (θ̂OLS)θ̂OLS +

T∑
t=1

(zt � γt)′σ−2t+hπt+h

)
,

Ω =

(
V (θ̂OLS) +

T∑
t=1

(zt � γt)′σ−2t+h(zt � γt)

)−1
.

For the prior, the OLS estimate of the full model is used. When one variable is

omitted from the model for the full sample period, the parameter of this predictor

is drawn from the prior. In order to obtain reasonable draws in this case, the OLS

estimate of the model seems to be a useful choice. Then the mean of the posterior

of θ is the weighted average of the OLS estimate of the full model and the OLS

estimate using only a subset of the predictors. While the OLS estimate of the full

model likely has a higher variance as it is likely to include irrelevant predictors, the

OLS estimate based on the sparse data matrix is more likely to suffer from omitted

variables bias. Hence, the posterior addresses the classic bias variance trade-off in

a convenient way by placing weights on both estimates in a data-driven way.

2. Sample γt:

• If γi is constant, sample it from

γi|γ−i, π1+h:T+h, z1:T ,θ, σ2
1+h:T+h ∼ Bernoulli

(
l1i

l1i + l0i

)
, (5)

with

l1i = exp

(
−1

2

T∑
t=1

(
πt+h − (zt � γ [γi=1])θ

σ2
t+h

)2
)
p(γi = 1),
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l0i = exp

(
−1

2

T∑
t=1

(
πt+h − (zt � γ [γi=0])θ

σ2
t+h

)2
)
p(γi = 0),

where p(γi = 1) = 0.5.

• In the MDS model Si,t is sampled for t = 1, . . . , T conditioning on γ−i,1:T ,

π1+h:T+h, z1:T , θ, σ2
1+h:T+h and the transition probabilities of the ith Markov

process µi, using the algorithm of Chib (1996) (see Appendix B for details).

The transition probabilities of the ith Markov process are drawn from a Beta

distribution

µ11,i|Si,1:T ∼ Beta(u11 + n11, u10 + n10), (6)

µ00,i|Si,1:T ∼ Beta(u00 + n00, u01 + n01), (7)

where njk counts the number of transitions from state j to k and ujk is the

prior hyperparamter. Setting u11 = u00 = u10 = u01 = 1 corresponds to

the uniform prior. The posterior is not sensitive to this prior choice if none

of the four possible transitions is rare. However, it is also possible to use a

more informative prior. For example a researcher may want to avoid a high

frequency of regime changes and smooth the variable inclusion probability over

time. Thus, once we are in a regime, i.e. a variable is excluded or included

in the model, the regime should only be switched if there is a strong signal

in the data. This prior belief can be implemented by setting u11 = u00 = T .

Sparse models are typically known to forecast better than models with to many

variables. A stronger favor for sparse models would be archived by setting only

u00 = T . All three prior parametrizations, i.e. the uniform, the smooth and

the sparse prior, are considered in the empirical part.

3. Sample σ−2t :

• In the case of homoscedastic errors where σ2
t = σ2, sample from the density

σ−2|θ, π1+h:T+h, z1:T ,γ1:T ∼ Gamma(a, b−1), (8)

where a = T + a0 and b = b0 +
∑T

t=1(πt+h − (zt � γt)θ)2.

The hyperparameters a0 and b0 are set to zero.

• In the case of heteroscedastic errors, sample conditioning on θ, π1+h:T+h, z1:T ,

γ1:T , using the algorithm of Kim et al. (1998) by assuming that

log(σt) = log(σt−1) + ξt, (9)
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where ξt ∼ N(0, ζ) and ζ is sampled from

ζ−1|σ2
1+h:T+h ∼ Gamma(a, b−1), (10)

where a = T + κ1 and b = κ2 +
∑T+h

t=1+h(log(σt)− log(σt−1))
2.

The hyperparameters κ1 and κ2 are set to 3 and 0.0001.

2.2. Comparison with existing literature

A growing literature works with Bayesian priors in models with many parameters, which

shrink some of the parameters towards zero to ensure parsimony. For example, Bańbura

et al. (2009) find that shrinking parameters leads to improved forecasts in large VAR

models. There is also an increasing number of papers applying shrinkage by using hierar-

chical priors, such as the lasso prior introduced by Park and Casella (2008). Hierarchical

priors have the advantage that the priors introducing the shrinkage depend on unknown

parameters which are estimated from the data, resulting in data-driven shrinkage. For

example, Korobilis (2013b) shows that hierarchical shrinkage is useful for macroeconomic

forecasting using many predictors. In a Phillips curve context, Belmonte et al. (2014) use

the lasso prior in a time-varying parameter (TVP) model. The lasso prior in their model

automatically decides which parameter is time-varying, constant or shrunk towards zero.

This approach may be well suited to model structural changes in the Phillips curve while

avoiding overfitting.

Fewer papers deal with model change over time as opposed to parameter change (which

empirically can only poorly approximate model change by allowing coefficients to be es-

timated as being approximately zero). Chan et al. (2012) consider dimension switching

in a TVP framework using the algorithm of Gerlach et al. (2000). However, in their

forecasting study, they only consider models with no predictors, a single predictor or

all m predictors. In other words, γ can only take on m + 2 values and not 2m as this

would be computationally infeasible for the algorithm they used. To consider all variable

combinations, dynamic model averaging (DMA) can be applied, using approximations in

form of so called forgetting factors (sometimes also called discount factors) as proposed

by Raftery et al. (2010). Koop and Korobilis (2012) find that DMA leads to substantial

improvements in forecasting inflation over simple benchmark models and more sophisti-

cated approaches. DMA assigns time-varying weights over the set of 2m possible TVP

models.3

In contrast to DMA or hierarchical shrinkage, the MDS model has the advantage that

through the indicator variables the likelihood contains information about the relevance of

3In the empirical application, only the intercept and the first lag are always included.
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every predictor at each point in time and thereby may lead to more efficient estimates.

In the DMA approach each model is estimated independently and does not use the in-

formation of the time-varying weights. For example, at the beginning of the sample, the

most weight may be placed on models with only a few predictors and at the end of the

sample more weight may be assigned to model with a large set of predictors. However,

each individual model is estimated using the same set of predictors for the whole sample

ignoring this information. However, it would be useful to take this information into ac-

count when estimating the parameters and this is exactly what the MDS model does. In

the hierarchical shrinkage approach some parameters are shrunk towards zero (i.e., the

corresponding variables are irrelevant), but this information is only contained in the prior

and not in the likelihood function. Furthermore, this approach cannot account for model

change over time, as it shrinks the parameters towards zero for all time periods or never.

Moreover, in contrast to DMA, the MDS model does not need approximations. It can

easily be estimated using Gibbs sampling and thereby take full parameter uncertainty into

account. Another potential drawback is that in the DMA approach all model combinations

have to be estimated in a deterministic fashion, while MDS uses a stochastic search

algorithm. The stochastic search is still feasible when the model space is too large to

be assessed in a deterministic manner by visiting only the most probable models in a

stochastic manner. Despite the potential advantages of MDS, the assumption of constant

parameters may appear restrictive. However, this assumption is less restrictive than it

seems, as the time-varying inclusion probabilities introduce a time-varying data based

shrinkage on the coefficients. Therefore, MDS addresses overfitting concerns and allows

for model change over time.

3. Forecasting Inflation

3.1. Data

This study forecasts core inflation as measured by the Personal Consumption Expenditure

(PCE) deflator for 1978Q2 through 2016Q4. The period from 1992Q1 to 2016Q4 is used to

evaluate the out-of-sample forecast performance. A wide range of variables is considered

as potential predictors, reflecting the major theoretical explanations of inflation as well

as variables which have been found to be useful in forecasting inflation in other studies.

The following predictors are used:

• DJIA: the percentage change in the Dow Jones Industrial Average.

• EMPLOY: the percentage change in employment.

• HSTARTS: the log of housing starts.
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• INFEXP: University of Michigan survey of inflation expectations.

• MONEY: the percentage change in the money supply (M1).

• OIL: the percentage change of Spot Crude Oil Price: WTI

• PMI: the change in the Institute of Supply Management (Manufacturing): Purchas-

ing Managers Composite Index.

• CONS: the percentage change in real personal consumption expenditures.

• GDP: the percentage change in real GDP.

• INV: the percentage change in Real Gross Private Domestic Investment (Residen-

tial)

• SPREAD: the spread between the ten year and three month Treasury bill rates.

• TBILL: three month Treasury bill (secondary market) rate.

• UNEMP: unemployment rate.

• CAPUT: the change in Capital Utilization (Manufacturing).

The variables are obtained from the “Real-Time Data Set for Macroeconomists” database

of the Philadelphia Federal Reserve Bank and from the FRED database of the Federal

Reserve Bank of St. Louis. All predictors are real time quarterly data so that all forecasts

are made using versions of the variables available at the respective time. Furthermore, all

data are seasonally adjusted if necessary. If not stated otherwise, all models considered

in the next section include four lags of quarterly inflation as additional predictors. This

is consistent with quarterly data.

3.2. Out-of-sample Results

In this section, the forecasting performance of the MDS model is investigated. In a first

step, MDS and Bernoulli models are considered in which the first lag of inflation and the

intercept are always included and all other variables are allowed to be omitted from the

model. In order to assess whether the MDS or the Bernoulli approach is useful to avoid

overfitting, their forecast performance is compared with an AR(1) model with intercept

and a multiple regression model containing all variables. Furthermore, the uniform, the

smooth and the sparse prior for the transition probabilities are compared. All these mod-

els are applied with a constant and a stochastic variance specification as described in the

description of the Gibbs Sampler.

In a second step the forecasting performance of the MDS model is compared with two

modeling approaches which have been found useful in inflation forecasting. These ap-

proaches are DMA proposed by Koop and Korobilis (2012) and the hierarchical shrinkage
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in TVP-models proposed by Belmonte et al. (2014). For DMA, three forgetting factors

have to be set by the researcher. The first controls the amount of time variation in the co-

efficients, the second the amount of time variation of the volatility and the third controls

the amount of time variation of the model probabilities (see Koop and Korobilis (2012)

for details). Setting these forgetting factors to one leads to the special case of constant

coefficients, constant variance and a constant model probabilities. Values close to one

are typically used in the literature because of overfitting concerns. Koop and Korobilis

(2012) set the hyperparamter for the variance to 0.98 and set the foregtting factors for

the coefficients and model probabilities to either 0.95 or 0.99, which they find to deliver a

favorable forecasting performance over simple benchmark regressions and more sophisti-

cated approaches. Thus, this set of values is used to forecast inflation. Moreover, dynamic

model selection (DMS) is considered next to DMA in the forecasting comparison. In the

TVP-model with hierarchical shrinkage the specification of the hierarchical gamma prior

is crucial, see Belmonte et al. (2014) for details. In the application the shape and scale

parameter of the inverse gamma prior is set to 0.1 leading to a relatively non-informative

prior. As a special case of this model, the lasso prior by Park and Casella (2008) in a

regression model with constant coefficients is also considered using the same hierarchical

inverse gamma prior. Furthermore, the last two models are estimated using the same two

specifications for the variance as for the MDS models.

In order to evaluate the forecast performance, the root mean squared forecast error

(RMSFE) and the mean absolute forecast error (MAFE) as standard forecast metrics are

used. However, these only evaluate the point forecasts and ignore the remaining part

of the predictive distribution. This is the reason why the predictive likelihood may be

preferable to evaluate the forecast performance. The predictive likelihood is the predic-

tive density for πt+h (given data through time t) evaluated at the actual outcome and

as a forecast metric has the advantage of evaluating the forecast performance of the en-

tire predictive density. Additionally, the predictive likelihood can also be used for model

selection. Therefore, the mean of the log predictive likelihood is used as an additional

forecast metric. For a motivation and detailed description of the predictive likelihood see

Geweke and Amisano (2010).

Table 1 contains the results for the one quarter and one year ahead forecasting perfor-

mance. Overall, it turns out that the MDS models forecast quite well. For one quarter

ahead inflation the forecasting performance of the Bernoulli model is similar to the fore-

casting performance of the AR(1) model and the full model containing all predictors. For

one year ahead inflation the full model seems to overfit the data, as it forecasts poorly.

Variable selection in the Bernoulli model delivers forecasting improvements over the full

model including all predictors, but does not improve over the simple AR(1) model. Fore-
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Table 1: Forecasting performance for one quarter and one year inflation

h = 1 h = 4
Model Variance RMSFE MAFE PL RMSFE MAFE PL
MDS uniform constant 0.34 0.22 4.05 1.25 0.99 2.91
MDS uniform stochastic 0.34 0.22 4.09 1.17 0.92 2.98
MDS sparse constant 0.33 0.21 4.08 1.19 0.90 2.84
MDS sparse stochastic 0.33 0.21 4.07 1.10 0.83 3.04
MDS smooth constant 0.34 0.22 4.09 1.15 0.90 2.87
MDS smooth stochastic 0.33 0.22 4.19 1.14 0.90 2.93
Bernoulli constant 0.35 0.24 2.25 1.35 1.08 2.44
Bernoulli stochastic 0.35 0.24 2.87 1.36 1.08 2.52
AR(1) constant 0.37 0.24 2.84 1.35 0.95 2.63
AR(1) stochastic 0.37 0.24 2.91 1.35 0.95 2.66
Full model constant 0.37 0.24 0.70 1.40 1.14 2.27
Full model stochastic 0.37 0.24 1.58 1.39 1.13 2.19
LASSO constant 0.36 0.24 3.13 1.39 1.12 2.55
LASSO stochastic 0.36 0.24 3.60 1.34 1.10 2.88
TVP-shrink constant 1.56 1.01 2.14 2.68 1.95 1.68
TVP-shrink stochastic 0.42 0.29 3.50 1.42 1.09 2.73
DMA (0.95) stochastic 0.35 0.23 3.91 1.06 0.81 2.88
DMA (0.99) stochastic 0.35 0.22 4.03 1.18 0.86 2.82
DMS (0.95) stochastic 0.37 0.25 4.08 1.18 0.92 2.96
DMS (0.99) stochastic 0.35 0.22 4.05 1.24 0.91 2.80

The table shows the RMSFE and MAFE in percentage points and the mean log pre-
dictive likelihood (PL).

casting improvements over the full model and a simple AR(1) model can be achieved by

considering dynamic variable selection in the form of MDS. The MDS models forecast

better than the Bernoulli models, both in terms of point forecasts and in terms of the

predictive likelihood as a forecasting metric. The different priors for the transition proba-

bilities deliver a very similar forecasting performance for one quarter and one year ahead

inflation. The specification of the variance turns out to be not crucial. An exception is

the TVP regression model, which forecasts poorly with a constant variance specification,

as the time-varying coefficients falsely fit the time-varying volatility rather than finding a

pattern useful for forecasting in this case. Furthermore, the hierarchical shrinkage in TVP

and constant coefficient regression produces less precise forecasts than the MDS models.

Only the DMA and DMS (which also allows for changing predictors) approach shows

a similar forecasting performance compared to the MDS models. This finding stresses

the importance of allowing for changing predictors over time using the Phillips curve to

forecast inflation.
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3.3. Full sample results

The calculation of variable inclusion probabilities is interesting from an economic per-

spective, but may also provide an explanation why MDS models provide better inflation

forecasts than the Bernoulli models. Figures B.1 and B.2 display the inclusion probabili-

ties of the MDS model with the uniform, the smooth and the sparse prior for the transition

probabilities and the Bernoulli model for the full sample. The inclusion probabilities are

shown for the stochastic variance specification. Overall, the Bernoulli approach assigns

higher inclusion probabilities to the variables than the MDS models. This may be one

reason why the MDS models deliver better forecasts. Another reason may be that some

inclusion probabilities show a sizable degree of time variation, for which the Bernoulli

approach cannot account. This demonstrates the usefulness of the MDS model over the

Bernoulli model. Comparing the three different priors for the MDS models reveal that

under the smooth prior the variable inclusion probabilities are less noisy, as a stronger

signal is needed to obtain a regime change compared to the uniform prior. In addition, the

sparse prior yields more parsimonious models, as a stronger signal in the data is needed

for a variable to be included in the model. However, sometimes the signal in the data

is strong enough to yield similar inclusion probabilities for the different prior specifications.

In many cases the Bernoulli model and the MDS model under the uniform prior deliver

similar results. In some cases the MDS model even assigns a roughly constant inclusion

probability to a variable. In other cases the MDS model also assigns a high probability

to one variable, but the probability changes over time. For one quarter inflation INEXP,

OIL and TBILL turn out to be important in all approaches and for one year inflation

INEXP, HSTARTS, UNEMP and TBILL turn out to be important. In particular for

one year inflation these variables show a sizeable degree of time variation. In particular

the inclusion probabilities of INEXP, HSTARTS and UNEMP switch very rapid over

time. This shows that the relevance of predictors does not always change gradually, like

it is assumed for example in TVP models. From an economic perspective it is particular

interesting that the relevance of UNEMP changes that rapidly as it has long been assumed

that economic policymakers face a trade-off between unemployment and inflation. These

results however suggest that this relation might not be stable over time.

4. Conclusion

This study uses the generalized Phillips curve to forecast inflation. While the original

Phillips curve is likely to miss some important predictors, a generalized Phillips curve

which uses too many predictors may lead to overfitting the data and to imprecise out-

of-sample predictions. Thus, this paper aims to assess which variables are important in
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determining inflation by using the Bernoulli model. The Bernoulli model, however, is

unable to account for model change over time. In order to be able to account for the

possibility that the set of predictors changes over time, this paper introduces the Markov

Dimension Switching (MDS) approach. In the MDS approach the set of predictors is

allowed to change over time. The empirical application shows that the most important

variables in the generalized Phillips curve are inflation expectations, the percentage change

of the oil price and the Treasury bill rate for one quarter inflation and the unemployment

rate, the Treasury bill rate and the number of newly built houses for one year inflation.

Furthermore, for one year inflation the unemployment rate, the Treasury bill rate and

the number of newly built houses show a sizeable degree of time variation for which the

Bernoulli approach is not able to account, highlighting the importance and benefit of the

MDS approach. This is also confirmed in a forecasting exercise, where the MDS model

delivers more precise forecasts than the Bernoulli model for one quarter and one year

ahead inflation. In addition, the paper demonstrates that the forecasting performance of

the MDS model is competitive in comparison with a range of other plausible alternatives.

Taken together, the paper presents a battery of theoretical and empirical arguments for

the potential benefits of the MDS approach.

12



References

Ang, A., Bekaert, G., and Wei, M. (2007). Do Macro Variables, Asset Markets, or Surveys

Forecast Inflation Better? Journal of Monetary Economics, 54(4):1163–1212.

Atkeson, A. and Ohanian, L. (2001). Are Phillips Curves Useful for Forecasting Inflation?

Federals Reserve Bank of Minneapolis, 25(1).

Bańbura, M., Goammpme, D., and Reichlin, L. (2009). Large Bayesian Vector Auto

Regressions. Journal of Applied Econometrics, 25(1):71–92.

Belmonte, M., Koop, G., and Korobilis, D. (2014). Hierachical Shrinkage in Time-Varying

Parameter Models. Journal of Forecasting, 33(1):80–94.

Chan, J. C., Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2012). Time Varying

Dimension Models. Journal of Business & Economic Statistics, 30(3):358–367.

Chib, S. (1996). Calculating Posterior Distributions and Modal Estimates in Markov

Mixture Models. Journal of Econometrics, 75(1):79–97.

Gerlach, R., Carter, C., and Kohn, R. (2000). Efficient Bayesian Inference in Dynamic

Mixture Models. Journal of American Statisitcal Association, 95(451):819–828.

Geweke, J. and Amisano, G. (2010). Hierachical Markov Normal Mixture Models with

Application to Financal Asset Returns. Journal of Applied Econometrics, 26(1):1–29.

Groen, J., Paap, R., and Ravazzolo, F. (2013). Real-Time Inflation Forecasting in a

Changing World. Journal of Business & Economic Statistics, 31(1):29–44.

Hamilton, J. (1989). A New Approach to the Economic Analysis of Nonstationary Time

Series and the Business Cycle. Econometrica, 57(2):357–384.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic Volatility: Likelihood Inference

and Comparison with ARCH Models. The Review of Economic Studies, 65(3):361–393.

Koop, G. and Korobilis, D. (2012). Forecasting Inflation Using Dynamic Model Averaging.

International Economic Review, 53(3):867–886.

Korobilis, D. (2013a). VAR Forecasting Using Bayesian Variable Selection. Journal of

Applied Econometrics, 28(2):204–230.

Korobilis, D. (2013b). Hierachical Shrinkage Prior for Dynamic Regressions with Many

Predictors. International Journal of Forecasting, 29(1):43–59.

Park, T. and Casella, G. (2008). The Bayesian Lasso. Journal of American Statisitcal

Association, 103(482):681–686.

13
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Appendix A. Gibbs sampling in Markov switching models

This paper considers Markov switching for each variable. Each Markov switching process

St can take on the value one or zero and is characterized by a 2 × 2 transition matrix

µ where µkj = Pr(St+1 = j|St = k), k = 0, 1 and j = 0, 1.4 In order to draw St for

t = 1, . . . , T first the Hamilton filter, proposed by Hamilton (1989), is used followed by

the simulation smoother of Chib (1996):

1. Initialize the Hamilton filter using steady state probabilities:

Pr(S0 = 0) =
1− µ11

2− µ11 − µ00

,

Pr(S0 = 1) =
1− µ00

2− µ11 − µ00

.

2. Given Pr(St−1 = k|ψt−1), where ψt−1 denotes the information set at time point t−1,

calculate Pr(St = j|ψt−1) as

Pr(St = j|ψt−1) =
1∑

k=0

µkjPr(St−1 = k|ψt−1).

3. Given ψt update the probabilities as

Pr(St = j|ψt) =
f(yt|St = j, ψt−1)Pr(St = j|ψt−1)∑1
j=0 f(yt|St = j, ψt−1)Pr(St = j|ψt−1)

,

where f(yt|St = j, ψt−1) denotes the likelihood function of the dependent variable.

4. Sample ST using Pr(St = T |ψT ).

5. Sample ST−1, . . . , S1 sequentially using

Pr(St = 1|St+1, ψt) =
Pr(St+1|St = 1)Pr(St = 1|ψt)∑1
j=0 Pr(St+1|St = j)Pr(St = j|ψt)

,

where Pr(St+1|St = j) denotes the transition probability and Pr(St = j|ψt) is saved

from step 3.

4For a simplified notation the index i is omitted and the general case of a two state Markov process is
considered.
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Appendix B. Figures
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Figure B.1: Variable inclusion probabilities for one quarter inflation.
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Figure B.2: Variable inclusion probabilities for one year inflation.
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